【題目】在邊長為8的正方形ABCD中,M是BC的中點,N是AD邊上的一點,且DN=3NA,若對于常數(shù)m,在正方形ABCD的邊上恰有6個不同的點P,使,則實數(shù)m的取值范圍是_______.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,點分別是圓心在原點,半徑為和的圓上的動點.動點從初始位置開始,按逆時針方向以角速度作圓周運動,同時點從初始位置開始,按順時針方向以角速度作圓周運動.記時刻,點的縱坐標分別為.
(Ⅰ)求時刻,兩點間的距離;
(Ⅱ)求關于時間的函數(shù)關系式,并求當時,這個函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E:,直線l不過原點O且不平行于坐標軸,l與E有兩個交點A,B,線段AB的中點為M.
若,點K在橢圓E上,、分別為橢圓的兩個焦點,求的范圍;
證明:直線OM的斜率與l的斜率的乘積為定值;
若l過點,射線OM與橢圓E交于點P,四邊形OAPB能否為平行四邊形?若能,求此時直線l斜率;若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設直線l:,圓C:,則下列說法中正確的是( )
A.直線l與圓C有可能無公共點
B.若直線l的一個方向向量為,則
C.若直線l平分圓C的周長,則
D.若直線l與圓C有兩個不同交點M、N,則線段MN的長的最小值為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)政府為了解決農村教師的住房問題,計劃征用一塊土地蓋一幢建筑總面積為10000公寓樓(每層的建筑面積相同).已知士地的征用費為,土地的征用面積為第一層的倍,經工程技術人員核算,第一層建筑費用為,以后每增高一層,其建筑費用就增加,設這幢公寓樓高層數(shù)為n,總費用為萬元.(總費用為建筑費用和征地費用之和)
(1)若總費用不超過835萬元,求這幢公寓樓最高有多少層數(shù)?
(2)試設計這幢公寓的樓層數(shù),使總費用最少,并求出最少費用.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】正數(shù)數(shù)列、滿足:≥,且對一切k≥2,k,是與的等差中項,是與的等比中項.
(1)若,,求,的值;
(2)求證:是等差數(shù)列的充要條件是為常數(shù)數(shù)列;
(3)記,當n≥2(n)時,指出與的大小關系并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四邊形是矩形,平面,,點在線段上(不為端點),且滿足,其中.
(1)若,求直線與平面所成的角的大;
(2)是否存在,使是的公垂線,即同時垂直?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量(單位: )和年利潤(單位:千元)的影響,對近8年的年宣傳費和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
表中,.
(1)根據(jù)散點圖判斷, 與哪一個適宜作為年銷售量關于年宣傳費的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結果及表中數(shù)據(jù),建立關于的回歸方程;
(3)已知這種產品的年利潤與、的關系為.根據(jù)(2)的結果要求:年宣傳費為何值時,年利潤最大?
附:對于一組數(shù)據(jù), ,…, 其回歸直線的斜率和截距的最小二乘估計分別為, .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com