【題目】為了讓稅收政策更好的為社會(huì)發(fā)展服務(wù),國(guó)家在修訂《中華人民共和國(guó)個(gè)人所得稅法》之后,發(fā)布了《個(gè)人所得稅專項(xiàng)附加扣除暫行辦法》,明確“專項(xiàng)附加扣除”就是子女教育、繼續(xù)教育大病醫(yī)療、住房貸款利息、住房租金贈(zèng)養(yǎng)老人等費(fèi)用,并公布了相應(yīng)的定額扣除標(biāo)準(zhǔn),決定自2019年1月1日起施行,某機(jī)關(guān)為了調(diào)查內(nèi)部職員對(duì)新個(gè)稅方案的滿意程度與年齡的關(guān)系,通過(guò)問(wèn)卷調(diào)查,整理數(shù)據(jù)得如下2×2列聯(lián)表:
40歲及以下 | 40歲以上 | 合計(jì) | |
基本滿意 | 15 | 10 | 25 |
很滿意 | 25 | 30 | 55 |
合計(jì) | 40 | 40 | 80 |
(1)根據(jù)列聯(lián)表,能否有85%的把握認(rèn)為滿意程度與年齡有關(guān)?
(2)若已經(jīng)在滿意程度為“基本滿意”的職員中用分層抽樣的方式選取了5名職員,現(xiàn)從這5名職員中隨機(jī)選取3名進(jìn)行面談求面談的職員中恰有2名年齡在40歲及以下的概率.
附:,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)沒(méi)有85%的把握(2)
【解析】
(1)根據(jù)列聯(lián)表可以求得K2的觀測(cè)值,結(jié)合臨界值表可得;(2)由題意,在滿意程度為“基本滿意“的職員中用分層抽樣的方式選取5名職員,應(yīng)抽取40歲以下和40歲以上分別為3名和2名,記為A,B,C,d,e,然后用列舉法列舉出隨機(jī)選3名的基本事件和面談的職員中恰有2名年齡在40歲及以下的基本事件,然后用古典概型的概率公式可得.
(1)根據(jù)列聯(lián)表可以求得的觀測(cè)值:
.
∵.
∴沒(méi)有85%的把握認(rèn)為滿意程度與年齡有關(guān).
(2)由題意,在滿意程度“基本滿意”的職員中用分層抽樣的方式選取5名職員,應(yīng)抽取40歲及以下和40歲以上分別為3名和2名,記為,,,,.
則隨機(jī)選3名,基本事件為:
,,,,,,,,,,共10個(gè).
滿足題意的基本事件為:,,,,,,共6個(gè).
設(shè)從這5名職員中隨機(jī)選取3名進(jìn)行面談,面談的職員中恰有2名年齡在40歲及以下的概率為.則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出四個(gè)命題:①若x2﹣3x+2=0,則x=1或x=2;②若x=y=0,則x2+y2=0;③已知x,y∈N,若x+y是奇數(shù),則x、y中一個(gè)是奇數(shù),一個(gè)是偶數(shù);④若x1,x2是方程x2﹣2x+2=0的兩根,則x1,x2可以是一橢圓與一雙曲線的離心率,那么( 。
A.③的否命題為假B.①的逆否命題為假
C.②的逆命題為真D.④的逆否命題為假
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0(a>0),命題q:實(shí)數(shù)x滿足x2﹣5x+6<0.
(1)若a=1,且p∧q為真命題,求實(shí)數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某機(jī)構(gòu)對(duì)A市居民手機(jī)內(nèi)安裝的“APP”(英文Application的縮寫(xiě),一般指手機(jī)軟件)的個(gè)數(shù)和用途進(jìn)行調(diào)研,在使用智能手機(jī)的居民中隨機(jī)抽取了100人,獲得了他們手機(jī)內(nèi)安裝APP的個(gè)數(shù),整理得到如圖所示頻率分布直方圖:
(Ⅰ)從A市隨機(jī)抽取一名使用智能手機(jī)的居民,試估計(jì)該居民手機(jī)內(nèi)安裝APP的個(gè)數(shù)不低于30的概率;
(Ⅱ)從A市隨機(jī)抽取3名使用智能手機(jī)的居民進(jìn)一步做調(diào)研,用X表示這3人中手機(jī)內(nèi)安裝APP的個(gè)數(shù)在[20,40)的人數(shù).
①求隨機(jī)變量X的分布列及數(shù)學(xué)期望;
②用Y1表示這3人中安裝APP個(gè)數(shù)低于20的人數(shù),用Y2表示這3人中手機(jī)內(nèi)安裝APP的個(gè)數(shù)不低于40的人數(shù).試比較EY1和EY2的大小.(只需寫(xiě)出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是兩條異面直線,直線與都垂直,則下列說(shuō)法正確的是( )
A. 若平面,則
B. 若平面,則,
C. 存在平面,使得,,
D. 存在平面,使得,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的四個(gè)頂點(diǎn)圍成的四邊形的面積為,原點(diǎn)到直線的距離為.
(1)求橢圓的方程;
(2)已知定點(diǎn),是否存在過(guò)的直線,使與橢圓交于,兩點(diǎn),且以為直徑的圓過(guò)橢圓的左頂點(diǎn)?若存在,求出的方程:若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】PM2.5是指空氣中直徑小于或等于2.5微米的顆粒物(也稱可入肺顆粒物),為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到某城市周一至周五某一時(shí)間段車流量與PM2.5濃度的數(shù)據(jù)如下表:
時(shí)間 | 周一 | 周二 | 周三 | 周四 | 周五 |
車流量x(萬(wàn)輛) | 100 | 102 | 108 | 114 | 116 |
PM2.5的濃度y(微克/立方米) | 78 | 80 | 84 | 88 | 90 |
(1)根據(jù)上表數(shù)據(jù),用最小二乘法,求出y關(guān)于x的線性回歸方程x;
(2)若周六同一時(shí)間段車流量200萬(wàn)輛,試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)此時(shí)PM2.5的濃度為多少?
(參考公式:,;參考數(shù)據(jù):xi=540,yi=420)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】六棱錐中,底面是正六邊形,底面,給出下列四個(gè)命題:
①線段的長(zhǎng)是點(diǎn)到線段的距離;
②異面直線與所成角是;
③線段的長(zhǎng)是直線與平面的距離;
④是二面角平面角.
其中所有真命題的序號(hào)是_______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(Ⅰ)求的普通方程和的直角坐標(biāo)方程;
(Ⅱ)過(guò)曲線上任一點(diǎn)作與夾角為45°的直線,交于點(diǎn),求的最大值與最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com