歐陽修《賣油翁》中寫到:(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌油瀝之,自錢孔入,而錢不濕.可見“行行出狀元”,賣油翁的技藝讓人嘆為觀止.若銅錢是直徑為4cm的圓,中間有邊長為1cm的正方形孔,若隨機向銅錢上滴一滴油(油滴是直徑為0.2cm的球)正好落人孔中的概率是
 
考點:幾何概型
專題:計算題,概率與統(tǒng)計
分析:本題考查的知識點是幾何概型的意義,關鍵是要求出銅錢面積的大小和中間正方形孔面積的大小,然后代入幾何概型計算公式進行求解.
解答: 解:∵銅錢的面積S=π•(2-0.1)2,能夠滴入油的圖形為邊長為1-2×
1
10
=
4
5
的正方形,面積
16
25
,∴P=
64
361π
,
故答案為:
64
361π
點評:幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個“幾何度量”只與“大小”有關,而與形狀和位置無關.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+(c-3a-2b)x+d的圖象如圖所示.
(1)求c,d的值;
(2)若函數(shù)f(x)在x=2處的切線方程為3x+y-11=0,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3sin(ωx+φ)(ω>0,-
π
2
<φ<0)的最小正周期為π,且其圖象經(jīng)過點(
3
,0).
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)=f(
x
2
+
12
),α,β∈(0,π),且g(α)=1,g(β)=
3
2
4
,求g(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-2x-3<0},B={x|m-8≤x≤m+1}(m∈R)
(1)當m=0時,求A∩B;
(2)p:x∈A,q:x∈B,若p是q的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}為等差數(shù)列,Sn為其前n項和,且a3=9,S6=60.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足b1=1,bn+1=abn,求數(shù)列{bn}的前n項和Tn
(Ⅲ)若
7
m
35
1
2n+3
(1+
1
a1
)(1+
1
a2
)…(1+
1
an-1
)對n≥2且n∈N*恒成立,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y=ax2+bx-5在點(2,1)處的切線方程為y=-3x+7,則a=
 
,b=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a,b,c∈R+,且
1
a
+
1
2b
+
1
3c
=1,則a+2b+3c的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)湖中有四個小島,它們的位置恰好近似構成四邊形的四個頂點,若要搭3座橋將它們連接起來,則不同的建橋方案有
 
種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=xlnx,則其在點x=e處的切線方程
 

查看答案和解析>>

同步練習冊答案