設(shè)橢圓方程為,過原點且傾斜角為的兩條直線分別交橢圓于A、C和B、D兩點.(1)用表示四邊形ABCD的面積S;(2)當時,求S的最大值.

(1)四邊形ABCD的面積S=4| x y|;(2)


解析:

(1)設(shè)經(jīng)過原點且傾斜角為的直線方程為y= x tan,代入

求得

由對稱性可知四邊ABCD為矩形,又由于

所以四邊形ABCD的面積S=4| x y|

(2)當時, ,設(shè)t=tan,則S,

設(shè),因為在(0,1]上是減函數(shù),所以

所以,當=時,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2005-2006學(xué)年北京市宣武區(qū)高二(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)橢圓方程為,過點M(0,1)的直線l交橢圓于點A、B,O是坐標原點,點P滿足,點N的坐標為,當l繞點M旋轉(zhuǎn)時,求:
(1)動點P的軌跡方程;
(2)的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省廣州六中高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)橢圓方程為,過點M(0,1)的直線l交橢圓于點A、B,O是坐標原點,點P滿足,點N的坐標為,當l繞點M旋轉(zhuǎn)時,求:
(1)動點P的軌跡方程;
(2)的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2005-2006學(xué)年浙江省杭州市高二(下)教學(xué)質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)橢圓方程為,過點M(0,1)的直線l交橢圓于點A、B,O是坐標原點,點P滿足,點N的坐標為,當l繞點M旋轉(zhuǎn)時,求:
(1)動點P的軌跡方程;
(2)的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2004年遼寧省高考數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)橢圓方程為,過點M(0,1)的直線l交橢圓于點A、B,O是坐標原點,點P滿足,點N的坐標為,當l繞點M旋轉(zhuǎn)時,求:
(1)動點P的軌跡方程;
(2)的最小值與最大值.

查看答案和解析>>

同步練習(xí)冊答案