設(shè)集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},求能使A⊆A∩B成立的a值的集合.
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專題:計(jì)算題,集合
分析:利用A⊆B,建立不等關(guān)系即可求解,注意當(dāng)A=∅時(shí),也成立.
解答: 解:若A=∅,即2a+1>3a-5,解得a<6時(shí),滿足A⊆B.
若A≠∅,即a≥6時(shí),要使A⊆B成立,
2a+1≥3
3a-5≤22
,解得1≤a≤9,此時(shí)6≤a≤9.
綜上a≤9.
點(diǎn)評:本題主要考查利用集合關(guān)系求參數(shù)取值問題,注意對集合A為空集時(shí)也成立,注意端點(diǎn)取值等號的取舍問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
4
+
y2
2
=1的離心率是(  )
A、
2
4
B、
1
2
C、
2
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=a,an+1=Sn+(-1)n,n∈N*,且{an+
2
3
(-1)n}
是等比數(shù)列.
(1)求a的值;
(2)求出通項(xiàng)公式an;
(3)求證:
1
a3
+
1
a4
+
+
1
a2n-1
+
1
a2n
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

試證明函數(shù)f(x)=-
1
x+1
在(-∞,-1)上是單調(diào)增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐S-ABCD中,SA⊥平面ABCD,底面四邊形ABCD為直角梯形,AB∥CD,AD⊥DC,SA=AD=DC=2,AB=1.
(Ⅰ)求證:平面SAD⊥平面SCD;
(Ⅱ)求二面角S-BC-D的余弦值;
(Ⅲ)M為SC中點(diǎn),在四邊形ABCD所在的平面內(nèi)是否存在一點(diǎn)N,使得MN⊥平面SBD,若存在,求三角形ADN的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=4cos2(2π-x)+4
3
cos(
π
2
-x)cosx-2,x∈R
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的最大值及其相對應(yīng)的x值;
(3)寫出函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n項(xiàng)和為Sn,對任意正整數(shù)n都有6Sn=1-2an,記bn=log
1
2
an

(Ⅰ)求a1,a2的值;
(Ⅱ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅲ)若cn+1-cn=bn,c1=0,求證:對任意n≥2,n∈N*都有
1
c2
+
1
c3
+…+
1
cn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=3n+k.
(1)求k的值及數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足anbn=n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正六棱錐的底面周長為24,側(cè)面與底面所成角為60°.求:
(1)棱錐的高;
(2)側(cè)棱長;
(3)側(cè)棱與底面所成角的正切值.

查看答案和解析>>

同步練習(xí)冊答案