【題目】有三個(gè)游戲規(guī)則如表,袋子中分別裝有形狀、大小相同的球,從袋中無(wú)放回地取球,

游戲1

游戲2

游戲3

袋中裝有3個(gè)黑球和2個(gè)白球

袋中裝有2個(gè)黑球和2個(gè)白球

袋中裝有3個(gè)黑球和1個(gè)白球

從袋中取出2個(gè)球

從袋中取出2個(gè)球

從袋中取出2個(gè)球

若取出的兩個(gè)球同色,則甲勝

若取出的兩個(gè)球同色,則甲勝

若取出的兩個(gè)球同色,則甲勝

若取出的兩個(gè)球不同色,則乙勝

若取出的兩個(gè)球不同色,則乙勝

若取出的兩個(gè)球不同色,則乙勝

問(wèn)其中不公平的游戲是(
A.游戲2
B.游戲3
C.游戲1和游戲2
D.游戲1和游戲3

【答案】C
【解析】解:對(duì)于游戲1,取出兩球同色的概率為 ,取出不同色的概率為 ,不公平; 對(duì)于游戲2,取出兩球同色的概率為 ,取出不同色的概率為 ,不公平;
對(duì)于游戲3,取出兩球同色即全是黑球,概率為0.5,取出不同色的也為0.5,公平;
故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 在△中, 點(diǎn)邊上, .

(Ⅰ)求;

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn).
(1)求PB和平面PAD所成的角的大;
(2)證明:AE⊥平面PCD;
(3)求二面角A﹣PD﹣C得到正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),且銷(xiāo)量與單價(jià)具有相關(guān)關(guān)系,將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷(xiāo),得到如下數(shù)據(jù):

單價(jià)x(單位:元)

8

8.2

8.4

8.6

8.8

9

銷(xiāo)量y(單位:萬(wàn)件)

90

84

83

80

75

68


(1)現(xiàn)有三條y對(duì)x的回歸直線方程: =﹣10x+170; =﹣20x+250; =﹣15x+210;根據(jù)所學(xué)的統(tǒng)計(jì)學(xué)知識(shí),選擇一條合理的回歸直線,并說(shuō)明理由.
(2)預(yù)計(jì)在今后的銷(xiāo)售中,銷(xiāo)量與單價(jià)服從(1)中選出的回歸直線方程,且該產(chǎn)品的成本是每件5元,為使公司獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定多少元?(利潤(rùn)=銷(xiāo)售收入﹣成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)當(dāng)時(shí),求的單調(diào)區(qū)間和極值.

)若對(duì)于任意,都有成立,求的取值范圍 ;

)若證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn).現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次預(yù)賽成績(jī)中隨機(jī)抽取5次,記錄如下:

88

89

92

90

91

84

88

96

89

93

(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,你認(rèn)為選派哪位學(xué)生參加合適?請(qǐng)說(shuō)明理由.(用樣本數(shù)據(jù)特征來(lái)說(shuō)明.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在物理實(shí)驗(yàn)中,為了研究所掛物體的重量x對(duì)彈簧長(zhǎng)度y的影響.某學(xué)生通過(guò)實(shí)驗(yàn)測(cè)量得到物體的重量與彈簧長(zhǎng)度的對(duì)比表:

物體重量(單位g)

1

2

3

4

5

彈簧長(zhǎng)度(單位cm)

1.5

3

4

5

6.5

參考公式:
①.樣本數(shù)據(jù)x1 , x2 , …xn的標(biāo)準(zhǔn)差
s= ,其中 為樣本的平均數(shù);
②.線性回歸方程系數(shù)公式 = = , =

(1)畫(huà)出散點(diǎn)圖;
(2)利用所給的參考公式,求y對(duì)x的回歸直線方程;
(3)預(yù)測(cè)所掛物體重量為8g時(shí)的彈簧長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知點(diǎn)A(1,0),D(﹣1,0),點(diǎn)B,C在單位圓O上,且∠BOC=
(Ⅰ)若點(diǎn)B( ),求cos∠AOC的值;
(Ⅱ)設(shè)∠AOB=x(0<x< ),四邊形ABCD的周長(zhǎng)為y,將y表示成x的函數(shù),并求出y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+(m+2)x+(2m+5)(m≠0)的兩個(gè)零點(diǎn)分別在區(qū)間(﹣1,0)和區(qū)間(1,2)內(nèi),則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案