關(guān)于在區(qū)間(a,b)上的可導(dǎo)函數(shù)f(x),有下列命題:①f(x)在(a,b)上是減函數(shù)的充要條件是
f′(x)<0;②(a,b)上的點(diǎn)x為f(x)的極值點(diǎn)的充要條件是f′(x)=0;③若f(x)在(a,b)上有唯一的極值點(diǎn)x,則x一定是f(x)的最值點(diǎn);④f(x)在(a,b)上一點(diǎn)x的左右兩側(cè)的導(dǎo)數(shù)異號(hào)的充要條件是點(diǎn)x是函數(shù)f(x)的極值點(diǎn).其中正確命題的序號(hào)為    
【答案】分析:①由f′(x)<0⇒f(x)在(a,b)上是減函數(shù),但反之是f′(x)≤0,因?yàn)椴谎芯恳粋(gè)點(diǎn)的單調(diào)性.②由極值點(diǎn)的定義判斷.③由最值點(diǎn)的定義判斷.④由極值點(diǎn)的定義判斷,綜合可得答案.
解答:解:①不正確,由f′(x)<0⇒f(x)在(a,b)上是減函數(shù),f(x)在(a,b)上是減函數(shù)⇒f′(x)≤0
②不正確,點(diǎn)x為f(x)的極值點(diǎn)由必須滿(mǎn)足兩個(gè)條件一是f′(x)=0,二是兩側(cè)的正負(fù)相異.
③正確,f(x)在(a,b)上有唯一的極值點(diǎn)x,對(duì)函數(shù)來(lái)講兩側(cè)的單調(diào)性相異.符合最值的定義.
④正確,由極值點(diǎn)的定義可知.
故答案為:③④
點(diǎn)評(píng):本題主要考查用導(dǎo)數(shù)研究單調(diào)區(qū)間,極值點(diǎn)的定義,最值點(diǎn)的定義,在應(yīng)用時(shí)一定要注意知識(shí)的完全性和純粹性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

18、關(guān)于在區(qū)間(a,b)上的可導(dǎo)函數(shù)f(x),有下列命題:①f(x)在(a,b)上是減函數(shù)的充要條件是
f′(x)<0;②(a,b)上的點(diǎn)x0為f(x)的極值點(diǎn)的充要條件是f′(x0)=0;③若f(x)在(a,b)上有唯一的極值點(diǎn)x0,則x0一定是f(x)的最值點(diǎn);④f(x)在(a,b)上一點(diǎn)x0的左右兩側(cè)的導(dǎo)數(shù)異號(hào)的充要條件是點(diǎn)x0是函數(shù)f(x)的極值點(diǎn).其中正確命題的序號(hào)為
③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線(xiàn)與x軸平行.
(1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
(2)證明:對(duì)任意實(shí)數(shù)0<x1<x2<1,關(guān)于x的方程:f′(x)-
f(x2)-f(x1)
x2-x1
=0
在(x1,x2)恒有實(shí)數(shù)解
(3)結(jié)合(2)的結(jié)論,其實(shí)我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點(diǎn)x0,使得f′(x0)=
f(b)-f(a)
b-a
.如我們所學(xué)過(guò)的指、對(duì)數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理?xiàng)l件.試用拉格朗日中值定理證明:
當(dāng)0<a<b時(shí),
b-a
b
<ln
b
a
b-a
a
(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

關(guān)于在區(qū)間(a,b)上的可導(dǎo)函數(shù)f(x),有下列命題:①f(x)在(a,b)上是減函數(shù)的充要條件是
f′(x)<0;②(a,b)上的點(diǎn)x0為f(x)的極值點(diǎn)的充要條件是f′(x0)=0;③若f(x)在(a,b)上有唯一的極值點(diǎn)x0,則x0一定是f(x)的最值點(diǎn);④f(x)在(a,b)上一點(diǎn)x0的左右兩側(cè)的導(dǎo)數(shù)異號(hào)的充要條件是點(diǎn)x0是函數(shù)f(x)的極值點(diǎn).其中正確命題的序號(hào)為 ________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

關(guān)于在區(qū)間(a,b)上的可導(dǎo)函數(shù)f(x),有下列命題:①f(x)在(a,b)上是減函數(shù)的充要條件是
f′(x)<0;②(a,b)上的點(diǎn)x0為f(x)的極值點(diǎn)的充要條件是f′(x0)=0;③若f(x)在(a,b)上有唯一的極值點(diǎn)x0,則x0一定是f(x)的最值點(diǎn);④f(x)在(a,b)上一點(diǎn)x0的左右兩側(cè)的導(dǎo)數(shù)異號(hào)的充要條件是點(diǎn)x0是函數(shù)f(x)的極值點(diǎn).其中正確命題的序號(hào)為 ______.

查看答案和解析>>

同步練習(xí)冊(cè)答案