(12分)已知
(1)若為非零常數(shù),解不等式;
(2)當(dāng)時(shí),不等式上有解,求的取值范圍.

(1)當(dāng)時(shí),不等式解集為;當(dāng)時(shí),不等式解集為;(2)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={a1,a2,…,an,n∈N*且n>2},令TA={x|x=ai+aj},ai∈A,aj∈A,1≤i≤j≤n,card(TA)表示集合TA中元素的個(gè)數(shù).
①若A={2,4,8,16},則card(TA)=
6
6
;
②若ai+1-ai=c( 1≤i≤n-1,c為非零常數(shù)),則card(TA)=
2n-3
2n-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax
x+1
(a為非零常數(shù)),定義:f1(x)=f(x),fk+1(x)=f[fk(x)],k∈N*,例如:f2(x)=f[f(x)],f3(x)=f[f2(x)],…
(1)當(dāng)a=2時(shí),求f2(1),f3(-
1
7
)
的值;
(2)若對(duì)于任意x≠-1,等式f2(x)=x恒成立,求a的值;
(3)當(dāng)a確定后,fk(x),k∈N*的值都由x的值確定.當(dāng)a=2時(shí),試通過(guò)對(duì)fk(x)的探究,寫出一個(gè)使得集合{fk(x)}為有限集的真命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={a1,a2a3,…,an},n∈N*n>2,令TA={x|xaiaj,ai,ajA,1≤i<jn},用card(TA)表示集合TA中元素的個(gè)數(shù).

①若A={2,4,8,16},則card(TA)=________;

②若ai+1aic(1≤in-1,c為非零常數(shù)),則card(TA)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省溫州市高二第二學(xué)期期中考試?yán)砜茢?shù)學(xué)(解析版) 題型:解答題

已知函數(shù),,k為非零實(shí)數(shù).

(Ⅰ)設(shè)t=k2,若函數(shù)f(x),g(x)在區(qū)間(0,+∞)上單調(diào)性相同,求k的取值范圍;

(Ⅱ)是否存在正實(shí)數(shù)k,都能找到t∈[1,2],使得關(guān)于x的方程f(x)=g(x)在[1,5]上有且僅有一個(gè)實(shí)數(shù)根,且在[-5,-1]上至多有一個(gè)實(shí)數(shù)根.若存在,請(qǐng)求出所有k的值的集合;若不存在,請(qǐng)說(shuō)明理由.

 

【解析】本試題考查了運(yùn)用導(dǎo)數(shù)來(lái)研究函數(shù)的單調(diào)性,并求解參數(shù)的取值范圍。與此同時(shí)還能對(duì)于方程解的問(wèn)題,轉(zhuǎn)化為圖像與圖像的交點(diǎn)問(wèn)題來(lái)長(zhǎng)處理的數(shù)學(xué)思想的運(yùn)用。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案