【題目】某區(qū)工商局、消費者協(xié)會在號舉行了以攜手共治,暢享消費為主題的大型宣傳咨詢服務活動,著力提升消費者維權意識.組織方從參加活動的群眾中隨機抽取名群眾,按他們的年齡分組:第,第,第,第,第,得到的頻率分布直方圖如圖所示.

)若電視臺記者要從抽取的群眾中選人進行采訪,求被采訪人恰好在第組或第組的概率;

)已知第組群眾中男性有人,組織方要從第組中隨機抽取名群眾組成維權志愿者服務隊,求至少有兩名女性的概率.

【答案】1;(2.

【解析】試題分析:(1)利用每個矩形的面積為頻率以及所有矩形面積之和為1進行求解;(2)列舉基本事件,利用古典概型的概率公式進行求解.

試題解析:()設第的頻率為

; 3

組的頻率為

所以被采訪人恰好在第組或第組的概率為

6

)設第的頻數(shù),則7

記第組中的男性為,女性為

隨機抽取名群眾的基本事件是: , ,

, , ,

, , , ,

, 10

其中至少有兩名女性的基本事件是: , , , , , , , , , , , ,

所以至少有兩名女性的概率為12

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,直線l的參數(shù)方程為 (t為參數(shù)),曲線C1的方程為ρ(ρ-4sin θ)=12,定點A(6,0),點P是曲線C1上的動點,Q為AP的中點.

(1)求點Q的軌跡C2的直角坐標方程;

(2)直線l與直線C2交于A,B兩點,若|AB|≥2,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在中學生測評中,分“優(yōu)秀、合格、尚待改進”三個等級進行學生互評,某校高一年級有男生人,女生人,為了了解性別對該維度測評結果的影響,采用分層抽樣方法從高一年級抽取了名學生的測評結果,并作出頻數(shù)統(tǒng)計表如下:

等級

優(yōu)秀

合格

尚待改進

頻數(shù)

15

5

表一:男生

等級

優(yōu)秀

合格

尚待改進

頻數(shù)

15

3

表二:女生

(1)從表二的非優(yōu)秀學生中隨機選取人交談,求所選人中恰有人測評等級為合格的概率;

(2)由表中統(tǒng)計數(shù)據(jù)填寫列聯(lián)表,試采用獨立性檢驗進行分析,能否在犯錯誤的概率不超過的前提下認為“測評結果優(yōu)秀與性別有關”,參考數(shù)據(jù)與公示: ,其中

臨界值表:

0.10

0.05

0.01

2.70

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

(Ⅰ)已知常數(shù)解關于的不等式

(Ⅱ)若函數(shù)的圖象恒在函數(shù)圖象的上方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形, 平面, 分別為的中點,且.

(1)求證:平面平面;

(2)求證:平面平面;

(3)求三棱錐與四棱錐的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3-3ax-1,a≠0.

(1)求f(x)的單調區(qū)間;

(2)若f(x)在x=-1處取得極值,直線y=m與y=f(x)的圖象有三個不同的交點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)是R上的偶函數(shù),且在[0,+∞)上單調遞增,則f(-2),f(3),f(-)的大小順序是:( )

A. f(-)>f(3)>f(-2) B. f(-) >f(-2)>f(3)

C. f(-2)>f(3)> f(-) D. f(3)>f(-2)> f(-)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)y=的單調遞減區(qū)間是_____________.

(2)y=的遞增區(qū)間是____________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某水泥廠銷售工作人員根據(jù)以往該廠的銷售情況,繪制了該廠日銷售量的頻率分布直方圖,如圖所示:

將日銷售量落入各組的頻率視為概率,并假設每天的銷售量相互獨立.

(1)求未來3天內,連續(xù)2天日銷售量不低于8噸,另一天日銷售量低于8噸的概率;

(2)用表示未來3天內日銷售量不低于8噸的天數(shù),求隨機變量的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案