定義域?yàn)镽的函數(shù)y=f(x)的值域?yàn)閇1,2],則函數(shù)y=f(x+2)的值域?yàn)?!--BA-->
[1,2]
[1,2]
分析:先分析y=f(x+2)的圖象與函數(shù)y=f(x)的圖象間的關(guān)系,在確定兩函數(shù)值域的關(guān)系即可
解答:解:∵y=f(x+2)的圖象是由函數(shù)y=f(x)的圖象向左平移2個(gè)單位得到的,
∴函數(shù)y=f(x+2)的值域與函數(shù)y=f(x)的值域相等
故函數(shù)y=f(x+2)的值域?yàn)閇1,2],
故答案為[1,2]
點(diǎn)評(píng):本題考查了抽象函數(shù)間的關(guān)系,函數(shù)圖象的平移變換,函數(shù)值域的意義
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)y=f(x)滿足f(x+1)f(x-1)=1,且f(3)=3,則f(2009)=(  )
A、3
B、
1
3
C、2009
D、
1
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12、已知定義域?yàn)镽的函數(shù)y=f(x),則下列命題:
①若f(x-1)=f(1-x)恒成立,則函數(shù)y=f(x)的圖象關(guān)于直線x=1的對(duì)稱;
②若f(x+1)+f(1-x)=0恒成立,則函數(shù)y=f(x)的圖象關(guān)于(1,0)點(diǎn)對(duì)稱;
③函數(shù)y=f(x-1)的圖象與函數(shù)y=f(1-x)的圖象關(guān)于y軸對(duì)稱;
④函數(shù)y=-f(x-1)的圖象與函數(shù)y=f(1-x)的圖象關(guān)于原點(diǎn)對(duì)稱;
⑤若f(1+x)+f(x-1)=0恒成立,則函數(shù)y=f(x)以4為周期.
其中真命題的有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)定義域是Df.Dg的函數(shù)y=f(x).y=g(x),
規(guī)定:函數(shù)h(x)=
f(x)g(x),當(dāng)x∈Df且x∈Dg
f(x),當(dāng)x∈Df且x∉Dg
g(x),當(dāng)x∉Df且x∈Dg

(1)若函數(shù)f(x)=
1
x-1
,g(x)=x2,寫(xiě)出函數(shù)h(x)的解析式;
(2)求問(wèn)題(1)中函數(shù)h(x)的值域;
(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,π],請(qǐng)?jiān)O(shè)計(jì)一個(gè)定義域?yàn)镽的函數(shù)y=f(x),及一個(gè)α的值,使得h(x)=cos4x,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義域?yàn)镽的函數(shù)y=f(x)對(duì)于任意x都有f(x+2)=
2
f(x),當(dāng)x∈[0,2]
時(shí)f(x)=sin(
π
2
x),則方程f(x)-
x
=0,x∈[0,8]
的根的個(gè)數(shù)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案