設(shè)橢圓C1=1(a>b>0)的左、右焦點分別是F1、F2,下頂點為A,線段OA的中點為B(O為坐標原點),如圖.若拋物線C2:y=x2-1與y軸的交點為B,且經(jīng)過F1,F(xiàn)2點.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)設(shè)M(0,),N為拋物線C2上的一動點,過點N作拋物線C2的切線交橢圓C1于P、Q兩點,求△MPQ面積的最大值。
解:(Ⅰ)由題意可知B(0,-1),則A(0,-2),故b=2
令y=0得即x=±1,則F1(-1,0),F(xiàn)2(1,0),故c=1
所以。于是橢圓C1的放成為:
(Ⅱ)設(shè)N(t,t2-1),由于知直線PQ的方程為:,即
代入橢圓方程整理得:
=


=
設(shè)點M到直線PQ的距離為d,則d=
所以,△MPQ的面積S==
=
當t=±3時取到“=”,經(jīng)檢驗此時△>0,滿足題意
綜上可知,△MPQ的面積的最大值為
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P.

(1)試用a表示點P的坐標;

(2)設(shè)A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;

(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個. 設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設(shè)AB是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C1數(shù)學公式+數(shù)學公式=1(a>b>0)的離心率為數(shù)學公式,直線l:x-y+數(shù)學公式=0與橢圓C1相切.
(1)求橢圓C1的方程;
(2)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1且垂直與橢圓的長軸,動直線l2垂直于直線l1于點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;
(3)若A(x1,2),B(x2,y2),C(x0,y0)是C2上不同的點,且AB⊥BC,求實數(shù)y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學單元檢測:圓錐曲線(2)(解析版) 題型:解答題

設(shè)橢圓C2=1(a>b>0),拋物線C2:x2+by=b2
(1)若C2經(jīng)過C1的兩個焦點,求C1的離心率;
(2)設(shè)A(0,b),,又M、N為C1與C2不在y軸上的兩個交點,若△AMN的垂心為,且△QMN的重心在C2上,求橢圓C和拋物線C2的方程.

查看答案和解析>>

同步練習冊答案