【題目】設函數f(x)= ,則滿足f(x)+f(x﹣ )>1的x的取值范圍是 .
【答案】x>
【解析】解:若x≤0,則x﹣ ≤﹣ ,
則f(x)+f(x﹣ )>1等價為x+1+x﹣ +1>1,即2x>﹣ ,則x> ,
此時 <x≤0,
當x>0時,f(x)=2x>1,x﹣ >﹣ ,
當x﹣ >0即x> 時,滿足f(x)+f(x﹣ )>1恒成立,
當0≥x﹣ >﹣ ,即 ≥x>0時,f(x﹣ )=x﹣ +1=x+ ,
此時f(x)+f(x﹣ )>1恒成立,
綜上x> ,
所以答案是:x>
【考點精析】認真審題,首先需要了解函數的值域(求函數值域的方法和求函數最值的常用方法基本上是相同的.事實上,如果在函數的值域中存在一個最。ù螅⿺担@個數就是函數的最。ù螅┲担虼饲蠛瘮档淖钪蹬c值域,其實質是相同的),還要掌握函數的值(函數值的求法:①配方法(二次或四次);②“判別式法”;③反函數法;④換元法;⑤不等式法;⑥函數的單調性法)的相關知識才是答題的關鍵.
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數方程為 (t為參數,α∈[0,π)),在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=4cosθ.
(Ⅰ)求C2的直角坐標方程;
(Ⅱ)若曲線C1與C2交于A,B兩點,且|AB|> ,求α的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在矩形ABCD中,AB=1,AD=2,動點P在以點C為圓心且與BD相切的圓上.若 =λ +μ ,則λ+μ的最大值為( )
A.3
B.2
C.
D.2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市為了解游客人數的變化規(guī)律,提高旅游服務質量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數據,繪制了下面的折線圖.
根據該折線圖,下列結論錯誤的是( 。
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,直線.
(1)求直線所過定點的坐標;
(2)求直線被圓所截得的弦長最短時的值及最短弦長.
(3)在(2)的前提下,若為直線上的動點,且圓上存在兩個不同的點到點的距離為1,求點的橫坐標的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線y=x2+mx﹣2與x軸交于A、B兩點,點C的坐標為(0,1),當m變化時,解答下列問題:(12分)
(1)能否出現(xiàn)AC⊥BC的情況?說明理由;
(2)證明過A、B、C三點的圓在y軸上截得的弦長為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某籃球隊對籃球運動員的籃球技能進行統(tǒng)計研究,針對籃球運動員在投籃命中時,運動員距籃筐中心的水平距離這項指標,對某運動員進行了若干場次的統(tǒng)計,依據統(tǒng)計結果繪制如下頻率分布直方圖:
(1)依據頻率分布直方圖估算該運動員投籃命中時,他到籃筐中心的水平距離的中位數;
(2)若從該運動員投籃命中時,他到籃筐中心的水平距離為2到5米的這三組中,用分層抽樣的方法抽取7次成績(單位:米,運動員投籃命中時,他到籃筐中心的水平距離越遠越好),并從抽到的這7次成績中隨機抽取2次,并規(guī)定:成績來自2到3米這一組時,記1分;成績來自3到4米這一組時,記2分;成績來4到5米的這一組記 4分,求該運動員2次總分不少于5分的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若無窮數列{an}滿足:只要ap=aq(p,q∈N*),必有ap+1=aq+1 , 則稱{an}具有性質P.
(1)若{an}具有性質P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;
(2)若無窮數列{bn}是等差數列,無窮數列{cn}是公比為正數的等比數列,b1=c5=1;b5=c1=81,an=bn+cn , 判斷{an}是否具有性質P,并說明理由;
(3)設{bn}是無窮數列,已知an+1=bn+sinan(n∈N*),求證:“對任意a1 , {an}都具有性質P”的充要條件為“{bn}是常數列”.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com