【題目】如圖所示,正三棱柱的所有棱長都為
,
為
中點(diǎn).
(1)求證:⊥平面
;
(2)求銳二面角的余弦值.
【答案】(1)見解析;(2)
【解析】
(1)取中點(diǎn)
,連結(jié)
,得
,所以
平面
,取
中點(diǎn)
,以
為原點(diǎn),
,
,
的方向?yàn)?/span>
軸的正方向建立空間直角坐標(biāo)系
,寫出各點(diǎn)坐標(biāo),求出
,
,
,利用向量證得
,
,從而得到
⊥平面
;(2)先求出平面
的法向量
,由(1)知
為平面
的法向量,計算
,然后可求出答案.
(1)取中點(diǎn)
,連結(jié)
.
∵為正三角形,∴
.
∵在正三棱柱中,平面
平面
,
∴平面
.
取中點(diǎn)
,以
為原點(diǎn),
,
,
的方向?yàn)?/span>
軸的正方向建立空間直角坐標(biāo)系
,如圖所示,
則,
,
,
,
,
∴,
,
.
∴,
,
∴,
,且
∴平面
.
(2)設(shè)平面的法向量為
.
,
.
∴,即
,解得
,
令得
為平面
的一個法向量.
由(1)知平面
,
為平面
的法向量,
∴.
∴銳二面角的大小的余弦值為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)和點(diǎn)
.
(Ⅰ)求線段的垂直平分線的直線方程;
(Ⅱ)若直線過點(diǎn)
,且
,
到直線
的距離相等.求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(其中).
(1)當(dāng)時,求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)時,討論函數(shù)
的零點(diǎn)個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車是指企業(yè)在校園、地鐵站點(diǎn)、公共站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是一種分時租賃模式,是共享經(jīng)濟(jì)的一種新形態(tài).某共享單車企業(yè)在城市就“一天中一輛單車的平均成本與租用單車數(shù)量之間的關(guān)系”進(jìn)行了調(diào)查,并將相關(guān)數(shù)據(jù)統(tǒng)計如下表:
租用單車數(shù)量 | 2 | 3 | 4 | 5 | 8 |
每天一輛車平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.5 |
根據(jù)以上數(shù)據(jù),研究人員設(shè)計了兩種不同的回歸分析模型,得到兩個擬合函數(shù):
模型甲: ,模型乙:
.
(1)為了評價兩種模型的擬合效果,完成以下任務(wù):
①完成下表(計算結(jié)果精確到0.1元)(備注: ,
稱為相應(yīng)于點(diǎn)
的殘差);
租用單車數(shù)量 | 2 | 3 | 4 | 5 | 8 | |
每天一輛車平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估計值 | 2.4 | 2 | 1.8 | 1.4 | |
殘差 | 0 | 0 | 0.1 | 0.1 | ||
模型乙 | 估計值 | 2.3 | 2 | 1.9 | ||
殘差 | 0.1 | 0 | 0 |
②分別計算模型甲與模型乙的殘差平方和及
,并通過比較
,
的大小,判斷哪個模型擬合效果更好.
(2)這家企業(yè)在城市投放共享單車后,受到廣大市民的熱烈歡迎并供不應(yīng)求,于是該企業(yè)決定增加單車投放量.根據(jù)市場調(diào)查,市場投放量達(dá)到1萬輛時,平均每輛單車一天能收入7.2元;市場投放量達(dá)到1.2萬輛時,平均每輛單車一天能收入6.8元.若按(1)中擬合效果較好的模型計算一天中一輛單車的平均成本,問該企業(yè)投放量選擇1萬輛還是1.2萬輛能獲得更多利潤?請說明理由.(利潤=收入-成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個單位有職工500人,其中不到35歲的有125人,35歲至50歲的有280人,50歲以上的有95人.為了了解這個單位職工與身體狀態(tài)有關(guān)的某項(xiàng)指標(biāo),要從中抽取100名職工作為樣本,應(yīng)該怎樣抽取?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了對某課題進(jìn)行討論研究,用分層抽樣的方法從三所高校A、B、C的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人)
高校 | 相關(guān)人數(shù) | 抽取人數(shù) |
A | x | 1 |
B | 36 | y |
C | 54 | 3 |
(1)求x、y;
(2)若從高校B相關(guān)的人中選2人作專題發(fā)言,應(yīng)采用什么抽樣法,請寫出合理的抽樣過程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某省各景點(diǎn)在大眾中的熟知度,隨機(jī)對15~65歲的人群抽樣了人,回答問題“某省有哪幾個著名的旅游景點(diǎn)?”統(tǒng)計結(jié)果如下圖表
組號 | 分組 | 回答正確 的人數(shù) | 回答正確的人數(shù) 占本組的頻率 |
第1組 | [15,25) | 0.5 | |
第2組 | [25,35) | 18 | |
第3組 | [35,45) | 0.9 | |
第4組 | [45,55) | 9 | 0.36 |
第5組 | [55,65] | 3 |
(1)分別求出的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人?
(3)在(2)抽取的6人中隨機(jī)抽取2人,求所抽取的人中恰好沒有第3組人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的離心率
,左焦點(diǎn)為
,右頂點(diǎn)為
,過點(diǎn)
的直線交橢圓于
兩點(diǎn),若直線
垂直于
軸時,有
.
(1)求橢圓的方程;
(2)設(shè)直線:
上兩點(diǎn)
,
關(guān)于
軸對稱,直線
與橢圓相交于點(diǎn)
(
異于點(diǎn)
),直線
與
軸相交于點(diǎn)
.若
的面積為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前
項(xiàng)和
滿足:
,數(shù)列
滿足:對任意
有
.
(1)求數(shù)列與數(shù)列
的通項(xiàng)公式;
(2)記,數(shù)列
的前
項(xiàng)和為
,證明:當(dāng)
時,
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com