【題目】已知函數(shù),,為的導(dǎo)函數(shù).
(1)討論的單調(diào)性;
(2)若,當(dāng)時,求證:有兩個零點.
【答案】(1)見解析;(2)證明見解析.
【解析】
(1)結(jié)合函數(shù)的導(dǎo)數(shù)與單調(diào)性的關(guān)系,對進行分類討論,分為,,,幾種情形,即可求出函數(shù)的單調(diào)性;
(2)結(jié)合(1)中的結(jié)果可得的單調(diào)性,易得1為函數(shù)一個零點,結(jié)合函數(shù)的單調(diào)性及函數(shù)的零點判定定理可求.
(1)
①當(dāng)時,令,得,令,得,
所以在上單調(diào)遞增,在上單調(diào)遞減;
②當(dāng)時,令,得,,
i)當(dāng)時,,所以在上單調(diào)遞增;
ii)當(dāng)時,令,得或;令,得,
所以在和單調(diào)遞增,在單調(diào)遞減;
iii)當(dāng)時,令,得或;令,得,
所以在和單調(diào)遞增,在單調(diào)遞減;
綜上:①當(dāng)時,在上單調(diào)遞增;在單調(diào)遞減;
②i)當(dāng)時,在上單調(diào)遞增;
ii)當(dāng)時,在和單調(diào)遞增,在單調(diào)遞減;
iii)當(dāng)時,在和單調(diào)遞增,在單調(diào)遞減;
(2)當(dāng)時,在與單調(diào)遞增,在單調(diào)遞減,
所以在與單調(diào)遞增,在單調(diào)遞減,
因為,所以是函數(shù)的一個零點,且,
當(dāng)時,取且,
則,
所以,所以在恰有一個零點,
所以在區(qū)間有兩個零點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)統(tǒng)計,某蔬菜基地西紅柿畝產(chǎn)量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對應(yīng)數(shù)據(jù)的散點圖,如圖所示.
(1)依據(jù)數(shù)據(jù)的散點圖可以看出,可用線性回歸模型擬合與的關(guān)系,請計算相關(guān)系數(shù)并加以說明(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);
(2)求關(guān)于的回歸方程,并預(yù)測液體肥料每畝使用量為千克時,西紅柿畝產(chǎn)量的增加量約為多少?
附:相關(guān)系數(shù)公式,回歸方程中斜率和截距的最小二乘估計公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知可導(dǎo)函數(shù)f(x)的定義域為,且滿足,,則對任意的,“”是“”的( )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為實數(shù).
(1)求的單調(diào)區(qū)間;
(2)若,則當(dāng)時,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列和等比數(shù)列的各項均為整數(shù),它們的前項和分別為,且,.
(1)求數(shù)列,的通項公式;
(2)求;
(3)是否存在正整數(shù),使得恰好是數(shù)列或中的項?若存在,求出所有滿足條件的的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】產(chǎn)能利用率是工業(yè)總產(chǎn)出對生產(chǎn)設(shè)備的比率,反映了實際生產(chǎn)能力到底有多少在運轉(zhuǎn)發(fā)揮生產(chǎn)作用.汽車制造業(yè)的產(chǎn)能利用率的正常值區(qū)間為,稱為“安全線”.如圖是2017年第3季度到2019年第4季度的中國汽車制造業(yè)的產(chǎn)能利用率的統(tǒng)計圖.以下結(jié)論正確的是( )
A.10個季度中,汽車產(chǎn)能利用率低于“安全線”的季度有5個
B.10個季度中,汽車產(chǎn)能利用率的中位數(shù)為
C.2018年4個季度的汽車產(chǎn)能利用率的平均數(shù)為
D.與上一季度相比,汽車產(chǎn)能利用率變化最大的是2019年第4季度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓Γ:的離心率為,左右焦點分別為F1,F2,且A、B分別是其左右頂點,P是橢圓上任意一點,△PF1F2面積的最大值為4.
(1)求橢圓Γ的方程.
(2)如圖,四邊形ABCD為矩形,設(shè)M為橢圓Γ上任意一點,直線MC、MD分別交x軸于E、F,且滿足,求證:AB=2AD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,直線:(為參數(shù),),曲線:(為參數(shù)),與相切于點,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.
(1)求的極坐標方程及點的極坐標;
(2)已知直線:與圓:交于,兩點,記的面積為,的面積為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com