【題目】已知數(shù)列的通項公式是

(1)判斷是否是數(shù)列項;

(2)試判斷數(shù)列中的項是否都在區(qū)間內(nèi);

(3)試判斷在區(qū)間內(nèi)是否有無數(shù)列中的項?若有,是第幾項?若沒有,請說明理由.

【答案】(1)不是數(shù)列(2)中的項都在區(qū)間內(nèi);(3)區(qū)間內(nèi)有數(shù)列中的項,且只有一項,是第2

【解析】思路分析(1)解方程,的值,不為整數(shù),所以不是數(shù)列中的項;(2)化簡得,再根據(jù),即得數(shù)列中的項都在區(qū)間內(nèi);3)解不等式

(1)由題可得,

,解得

因為不是正整數(shù),所以不是數(shù)列中的項.(3分)

(2)因為

,所以,所以

所以數(shù)列中的各項都在區(qū)間)內(nèi).(6分)

(3),,,解得

所以

故區(qū)間內(nèi)有數(shù)列中的項,且只有一項,是第2(10分)

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某研究性學習小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

日期

3月1日

3月2日

3月3日

3月4日

3月5日

溫差(℃)

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均小于25”的概率;

(2)請根據(jù)3月2日至3月4日的數(shù)據(jù),求出關(guān)于的線性回歸方程;

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)所得的線性回歸方程是否可靠?

(參考公式:回歸直線方程為,其中,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處取得極值.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)上恰有兩個不同的零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線

(1)求曲線在點處的切線方程;

(2)過原點作曲線的切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=|xa||x2|.

1)當a=-3時,求不等式fx≥3的解集;

2)若fx≤|x4|的解集包含[1,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)圓的方程為x2y24過點M(0,1)的直線l交圓于點A、B,O是坐標原點,PAB的中點l繞點M旋轉(zhuǎn)時,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在研究某種藥物對“H1N11”病毒的治療效果時,進行動物試驗,得到以下數(shù)據(jù),對146只動物服用藥物,其中101只動物存活,45只動物死亡;對照組144只動物進行常規(guī)治療,其中124只動物存活,20只動物死亡.

(1)根據(jù)以上數(shù)據(jù)建立一個列聯(lián)表;

(2)試問該種藥物對治療“H1N1”病毒是否有效?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學餐飲中心為了解新生的飲食習慣,在全校一年級學生中進行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:

喜歡甜品

不喜歡甜品

合 計

南方學生

60

20

80

北方學生

10

10

20

合 計

70

30

100

⑴根據(jù)表中數(shù)據(jù),問是否有95%的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差

異”;

⑵已知在被調(diào)查的北方學生中有5名數(shù)學系的學生,其中2名喜歡甜品,現(xiàn)在從這5名學生中隨機

抽取3人,求至多有1人喜歡甜品的概率.

0.100

0.050

0.010

2.706

3.841

6.635

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)統(tǒng)計,截至2016年底全國微信注冊用戶數(shù)量已經(jīng)突破9.27億.為調(diào)查大學生這個微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從某市大學生中隨機抽取100位同學進行了抽樣調(diào)查,結(jié)果如下:

(1)求,的值及樣本中微信群個數(shù)超過12的概率;

(2)若從這100位同學中隨機抽取2人,求這2人中恰有1人微信群個數(shù)超過12的概率;

(3)以(1)中的頻率作為概率,若從全市大學生中隨機抽取3人,記表示抽到的是微信群個數(shù)超過12的人數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案