【題目】互聯(lián)網(wǎng)使我們的生活日益便捷,網(wǎng)絡(luò)外賣(mài)也開(kāi)始成為不少人日常生活中不可或缺的一部分,某市一調(diào)查機(jī)構(gòu)針對(duì)該市市場(chǎng)占有率較高的甲、乙兩家網(wǎng)絡(luò)外賣(mài)企業(yè)(以下外賣(mài)甲、外賣(mài)乙)的經(jīng)營(yíng)情況進(jìn)行了調(diào)查,調(diào)查結(jié)果如下表:

1

2

3

4

5

外賣(mài)甲日接單x(百單)

5

2

9

8

11

外賣(mài)乙日接單y(百單)

2

3

10

5

15

1)試根據(jù)表格中這五天的日接單量情況,從統(tǒng)計(jì)的角度說(shuō)明這兩家外賣(mài)企業(yè)的經(jīng)營(yíng)狀況;

2)據(jù)統(tǒng)計(jì)表明,yx之間具有線性關(guān)系.

①請(qǐng)用相關(guān)系數(shù)r對(duì)yx之間的相關(guān)性強(qiáng)弱進(jìn)行判斷;(若,則可認(rèn)為yx有較強(qiáng)的線性相關(guān)關(guān)系(r值精確到0.001))

②經(jīng)計(jì)算求得yx之間的回歸方程為,假定每單外賣(mài)業(yè)務(wù)企業(yè)平均能獲純利潤(rùn)3元,試預(yù)測(cè)當(dāng)外賣(mài)乙日接單量不低于25百單時(shí),外賣(mài)甲所獲取的日純利潤(rùn)的大致范圍.(x值精確到0.01

相關(guān)公式:

參考數(shù)據(jù):.

【答案】(1)外賣(mài)甲平均日接單與乙相同﹐但外賣(mài)甲日接單量更集中一些,所以外賣(mài)甲比外賣(mài)乙經(jīng)營(yíng)狀況更好.(2)①可認(rèn)為yx之間有較強(qiáng)的線性相關(guān)關(guān)系;②外賣(mài)甲所獲取的日純利潤(rùn)大約不低于6006元.

【解析】

1)求得甲乙兩個(gè)企業(yè)的平均值,再根據(jù)數(shù)據(jù)的集中情況綜合比較即可.

2)根據(jù)參考公式和數(shù)據(jù),代入計(jì)算得,即可判斷相關(guān)性的強(qiáng)弱;根據(jù)乙外賣(mài)的接單量,可先求得甲外賣(mài)的日接單量的最小值.根據(jù)利潤(rùn)即接單量即可求得日純利潤(rùn)的范圍.

1)由題可知,(百單),

(百單)

外賣(mài)甲的日接單量的方差為,

外賣(mài)乙的日接單量的方差,

因?yàn)?/span>,,即外賣(mài)甲平均日接單與乙相同,但外賣(mài)甲日接單量更集中一些,所以外賣(mài)甲比外賣(mài)乙經(jīng)營(yíng)狀況更好.

2)①因?yàn)?/span>

由:

代入計(jì)算可得,相關(guān)系數(shù)

所以可認(rèn)為yx之間有較強(qiáng)的線性相關(guān)關(guān)系;

②令,

解得,

,

所以當(dāng)外賣(mài)乙日接單量不低于25百單時(shí),外賣(mài)甲所獲取的日純利潤(rùn)大約不低于6006.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿(mǎn)分14分)本題共有2個(gè)小題,第1小題滿(mǎn)分6分,第2小題滿(mǎn)分8.

有時(shí)可用函數(shù)

描述學(xué)習(xí)某學(xué)科知識(shí)的掌握程度,其中x表示某學(xué)科知識(shí)的學(xué)習(xí)次數(shù)(),表示對(duì)該學(xué)科知識(shí)的掌握程度,正實(shí)數(shù)a與學(xué)科知識(shí)有關(guān).

1) 證明:當(dāng)時(shí),掌握程度的增加量總是下降;

2) 根據(jù)經(jīng)驗(yàn),學(xué)科甲、乙、丙對(duì)應(yīng)的a的取值區(qū)間分別為,,

.當(dāng)學(xué)習(xí)某學(xué)科知識(shí)6次時(shí),掌握程度是85%,請(qǐng)確定相應(yīng)的學(xué)科.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)學(xué)校對(duì)高三年級(jí)文科學(xué)生進(jìn)行了一次自主學(xué)習(xí)習(xí)慣的自評(píng)滿(mǎn)意度的調(diào)查,按系統(tǒng)抽樣方法得到了一個(gè)自評(píng)滿(mǎn)意度(百分制,單位:分)的樣本,如圖分別是該樣本數(shù)據(jù)的莖葉圖和頻率分布直方圖(都有部分缺失).

1)完善頻率分布直方圖(需寫(xiě)出計(jì)算過(guò)程);

2)分別根據(jù)莖葉圖和頻率分布直方圖求出樣本數(shù)據(jù)的中位數(shù)m1m2,并指出選用哪一個(gè)數(shù)據(jù)來(lái)估計(jì)總體的中位數(shù)更合理(需要敘述理由).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別過(guò)橢圓左、右焦點(diǎn)的動(dòng)直線相交于點(diǎn),與橢圓分別交于不同四點(diǎn),直線的斜率滿(mǎn)足, 已知軸重合時(shí), .

1)求橢圓的方程;

2)是否存在定點(diǎn)使得為定值,若存在,求出點(diǎn)坐標(biāo)并求出此定值,若不存在,

說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地自2014年至2019年每年年初統(tǒng)計(jì)所得的人口數(shù)量如下表所示:

年份

2014

2015

2016

2017

2018

2019

人數(shù)/千人

2082

2135

2203

2276

2339

2385

(1)根據(jù)表中的數(shù)據(jù)計(jì)算2014年至2018年每年該地人口的增長(zhǎng)數(shù)量,并描述該地人口數(shù)量的變化趨勢(shì);

(2)研究人員用函數(shù)擬合該地的人口數(shù)量,其中的單位是年,2014年初對(duì)應(yīng)時(shí)刻的單位是干人,設(shè)的反函數(shù)為的值(精確到0.1),并解釋其實(shí)際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】第十一屆全國(guó)少數(shù)民族傳統(tǒng)體育運(yùn)動(dòng)會(huì)在河南鄭州舉行,某項(xiàng)目比賽期間需要安排3名志愿者完成5項(xiàng)工作,每人至少完成一項(xiàng),每項(xiàng)工作由一人完成,則不同的安排方式共有多少種

A.60B.90C.120D.150

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】水污染現(xiàn)狀與工業(yè)廢水排放密切相關(guān),某工廠深人貫徹科學(xué)發(fā)展觀,努力提高污水收集處理水平,其污水處理程序如下:原始污水必先經(jīng)過(guò)A系統(tǒng)處理,處理后的污水(A級(jí)水)達(dá)到環(huán)保標(biāo)準(zhǔn)(簡(jiǎn)稱(chēng)達(dá)標(biāo))的概率為p0<p<1.經(jīng)化驗(yàn)檢測(cè),若確認(rèn)達(dá)標(biāo)便可直接排放;若不達(dá)標(biāo)則必須進(jìn)行B系統(tǒng)處理后直接排放.

某廠現(xiàn)有4個(gè)標(biāo)準(zhǔn)水量的A級(jí)水池,分別取樣、檢測(cè),多個(gè)污水樣本檢測(cè)時(shí),既可以逐個(gè)化驗(yàn),也可以將若干個(gè)樣本混合在一起化驗(yàn),混合樣本中只要有樣本不達(dá)標(biāo),則混合樣本的化驗(yàn)結(jié)果必不達(dá)標(biāo),若混合樣本不達(dá)標(biāo),則該組中各個(gè)樣本必須再逐個(gè)化驗(yàn);若混合樣本達(dá)標(biāo),則原水池的污水直接排放

現(xiàn)有以下四種方案:

方案一:逐個(gè)化驗(yàn);

方案二:平均分成兩組化驗(yàn);方案三;三個(gè)樣本混在一起化驗(yàn),剩下的一個(gè)單獨(dú)化驗(yàn);

方案四:四個(gè)樣本混在一起化驗(yàn).

化驗(yàn)次數(shù)的期望值越小,則方案越"優(yōu)".

1)若,求2個(gè)A級(jí)水樣本混合化驗(yàn)結(jié)果不達(dá)標(biāo)的概率;

2)①若,現(xiàn)有4個(gè)A級(jí)水樣本需要化驗(yàn),請(qǐng)問(wèn):方案一、二、四中哪個(gè)最優(yōu)"?②若方案三方案四"優(yōu),求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義一:對(duì)于一個(gè)函數(shù),若存在兩條距離為d的直線,使得在時(shí),恒成立,則稱(chēng)函數(shù)D內(nèi)有一個(gè)寬度為d的通道.定義二:若一個(gè)函數(shù),對(duì)于任意給定的正數(shù),都存在一個(gè)實(shí)數(shù),使得函數(shù)內(nèi)有一個(gè)寬度為的通道,則稱(chēng)在正無(wú)窮處有永恒通道.下列函數(shù):①;②;③.其中在正無(wú)窮處有永恒通道的函數(shù)的個(gè)數(shù)為(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示.

(1) 求函數(shù)的解析式;

(2) 如何由函數(shù)的通過(guò)適當(dāng)圖象的變換得到函數(shù)的圖象, 寫(xiě)出變換過(guò)程;

(3) 若,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案