函數(shù)f(x)=
1
ln(x+2)
+
9-x2
的定義域為( 。
A、[-3,-1)∪(-1,3]
B、(-2,-1)∪(-1,3]
C、[-3,3]
D、(-2,3]
考點:對數(shù)函數(shù)的定義域,函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由根式內(nèi)部的代數(shù)式大于等于0,分式的分母不等于0,對數(shù)式的真數(shù)大于0聯(lián)立不等式組得答案.
解答: 解:要使函數(shù)有意義,則
x+2>0
x+2≠1
9-x2≥0

解得-2<x<-1或-1<x≤3.
∴函數(shù)f(x)的定義域為(-2,-1)∪(-1,3].
故選:B.
點評:本題考查了函數(shù)的定義域及其求法,考查了不等式組的解法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=-
3
5
,且α是第三象限的角,則cos(α+
π
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={0,1,2},N={x|x⊆M},則M與N的關(guān)系正確的是( 。
A、M∈NB、M⊆N
C、N⊆MD、M=N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={1,2,3,4,5,6},集合A={1,2,5},∁UB={4,5,6},求:
(1)集合A∩B;
(2)集合(∁UA)∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知,函數(shù)f(x)的定義域為(a,b),若“?x0∈(a,b),f(x0)+f(-x0)≠0”是假命題,則f(a+b)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A,B是非空集合,定義A×B={x|x∈A∪B且x∉A∩B},已知A={x|y=
2-x
},B={x|x≥1}
,則A×B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x>1},若a∈A,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓W:
x2
2m+10
+
y2
m2-2
=1的左焦點為F(m,0),過點M(-3,0)作一條斜率大于0的直線l與橢圓W交于不同的兩點A、B,延長BF交橢圓W于點C.
(1)求橢圓W的離心率;
(2)若∠MAC=60°,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:已知空間四邊形ABCD的邊長和對角線的長都為2,點E,F(xiàn),G分別是AB,AD,DC的中點求下列數(shù)量積:
(1)
AB
AC

(2)
AD
BD

(3)
GF
AC

(4)
EF
BC

查看答案和解析>>

同步練習(xí)冊答案