【題目】已知橢圓C: =1(a>b>0)的離心率為 ,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線x﹣y+ =0相切,過點(diǎn)P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點(diǎn).
(1)求橢圓C的方程;
(2)求 的取值范圍;
(3)若B點(diǎn)關(guān)于x軸的對稱點(diǎn)是E,證明:直線AE與x軸相交于定點(diǎn).

【答案】
(1)解:由題意知, , 即b=

又a2=b2+c2

∴a=2,b=

故橢圓的方程為


(2)解:由題意知直線l的斜率存在,設(shè)直線l的方程為y=k(x﹣4)

可得:(3+4k2)x2﹣32k2x+64k2﹣12=0

設(shè)A(x1,y1),B (x2,y2),則△=322k4﹣4(3+4k2)(64k2﹣12)>0

∴x1+x2= ,x1x2=

=x1x2+y1y2=

=

=

=


(3)證明:∵B,E關(guān)于x軸對稱

∴可設(shè)E(x2,﹣y2

∴直線AE的方程為

令y=0可得x=

∵y1=k(x1﹣4),y2=k(x2﹣4)

= =1

∴直線AE與x軸交于定點(diǎn)(1,0)


【解析】(1)由題意知, ,利用點(diǎn)到直線的距離公式可求b,結(jié)合a2=b2+c2可求a,即可求解(2)由題意設(shè)直線l的方程為y=k(x﹣4),聯(lián)立直線與橢圓方程,設(shè)A(x1 , y1),B (x2 , y2),根據(jù)方程的根與系數(shù)關(guān)系求出x1+x2 , x1x2 , 由△>0可求k的范圍,然后代入 =x1x2+y1y2= = 中即可得關(guān)于k的方程,結(jié)合k的范圍可求 的范圍(3)由B,E關(guān)于x軸對稱可得E(x2 , ﹣y2),寫出AE的方程,令y=0,結(jié)合(2)可求
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識,掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC1是正方體ABCD﹣A1B1C1D1的對角線.

(1)求證:平面A1BD∥平面CD1B1;
(2)求證:直線AC1⊥直線BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)若 ,求曲線 在點(diǎn) 處的切線方程;

(2)若對任意 在恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于平面向量,有下列四個(gè)命題:
①若
=(1,1), =(2,x),若 平行,則x=2.
③非零向量 滿足| |=| |=| |,則 的夾角為60°.
④點(diǎn)A(1,3),B(4,﹣1),與向量 同方向的單位向量為( ).
其中真命題的序號為 . (寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小學(xué)對五年級的學(xué)生進(jìn)行體質(zhì)測試,已知五年一班共有學(xué)生30人,測試立定跳遠(yuǎn)的成績用莖葉圖表示如圖(單位:cm): 男生成績在175cm以上(包括175cm)定義為“合格”,成績在175cm以下(不包括175cm)定義為“不合格”.
女生成績在165cm以上(包括165cm)定義為“合格”,成績在165cm以下(不包括165cm)定義為“不合格”.

(1)求五年一班的女生立定跳遠(yuǎn)成績的中位數(shù);
(2)在五年一班的男生中任意選取3人,求至少有2人的成績是合格的概率;
(3)若從五年一班成績“合格”的學(xué)生中選取2人參加復(fù)試,用X表示其中男生的人數(shù),寫出X的分布列,并求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從高一年級A,B兩個(gè)班中各選出7名學(xué)生參加物理競賽,他們的成績(單位:分)的莖葉圖如圖所示,其中A班學(xué)生的平均分是85分

(1)求m的值,并計(jì)算A班7名學(xué)生成績的方差s2;
(2)從成績在90分以上的學(xué)生中隨機(jī)抽取兩名學(xué)生,求至少有一名A班學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是自然對數(shù)的底數(shù)).

1)若,求函數(shù)的單調(diào)區(qū)間;

2)若 內(nèi)無極值,求的取值范圍;

3)設(shè),求證: 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知向量 =( ,﹣ ), =(sinx,cosx),x∈(0, ).
(1)若 ,求tanx的值;
(2)若 的夾角為 ,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,b>0,且a2+b2= ,若a+b≤m恒成立, (Ⅰ)求m的最小值;
(Ⅱ)若2|x﹣1|+|x|≥a+b對任意的a,b恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案