f(x)=(x–a)(x–b)–2(其中a<b),且α,β是方程f(x)=0的兩根(α<β),則實數(shù)a,b,α,β的大小關(guān)系為________(用“<”連接).
科目:高中數(shù)學(xué) 來源:天津一中2008-2009年高三年級三月考數(shù)學(xué)試卷(理) 題型:044
已知f(x)=(x∈R),在區(qū)間[-1,1]上是增函數(shù).
(1)求實數(shù)a的值組成的集合A;
(2)設(shè)關(guān)于x的方程f(x)=的兩個非零實根為x1、x2,試問:是否存在實數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標系中,函數(shù)f(x)=2x+1與g(x)=21-x圖象關(guān)于( )
A.原點對稱 B.x軸對稱
C.y軸對稱 D.直線y=x對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆新課標高三配套第四次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=x3+
x2-ax-a,x∈R,其中a>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點,求a的取值范圍;
(3)當a=1時,設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省、岳陽縣一中高三11月聯(lián)考理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)(第一問8分,第二問5分)
已知函數(shù)f(x)=2lnx,g(x)=ax2+3x.
(1)設(shè)直線x=1與曲線y=f(x)和y=g(x)分別相交于點P、Q,且曲線y=f(x)和y=g(x)在點P、Q處的切線平行,若方程f(x2+1)+g(x)=3x+k有四個不同的實根,求實數(shù)k的取值范圍;
(2)設(shè)函數(shù)F(x)滿足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問是否存在實數(shù)a,使得當x∈(0,1]時,F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:新課標高三數(shù)學(xué)平面向量的數(shù)量積、平面向量的拓展與應(yīng)用專項訓(xùn)練(河北) 題型:單選題
設(shè)a,b是非零向量,若函數(shù)
f(x)=(x a+b)·(a-x b)的圖象是一條直線,則必有( )
A.a(chǎn)⊥b | B.a(chǎn)∥b |
C.|a|=|b| | D.|a|≠|(zhì)b| |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com