設直線l和平面α、B,且lα,lB,給出下列三個論斷:

①l⊥α,②α⊥B,③l∥B.

從中任取兩個作為條件,其余一個作為結(jié)論,在構(gòu)成的諸命題中,寫出你認為正確的所有命題:__________________.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖1,在平面內(nèi),ABCD是∠BAD=60°,且AB=a的菱形,ADD′′A1和CD D′C1都是正方形.將兩個正方形分別沿AD,CD折起,使D′′與D′重合于點D1.設直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(cè)(圖2).
(Ⅰ) 設二面角E-AC-D1的大小為θ,若
π
4
≤θ≤
π
3
,求線段BE長的取值范圍;
(Ⅱ)在線段D1E上存在點P,使平面PA1C1∥平面EAC,求
D1P
PE
與BE之間滿足的關(guān)系式,并證明:當0<BE<a時,恒有
D1P
PE
<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)設直線l與球O有且只有一個公共點P,從直線l出發(fā)的兩個半平面α,β截球O的兩個截面圓的半徑分別為1和
3
,二面角α-l-β的平面角為150°,則球O的表面積為( 。
A、4πB、16π
C、28πD、112π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面上一定點C(4,0)和一定直線l:x=1,P為該平面上一動點,作PQ⊥l,垂足為Q,且(
PC
+2
PQ
)•(
PC
-2
PQ
)=0

(1)問:點P在什么曲線上?并求出該曲線的方程;
(2)設直線l:y=kx+1與(1)中的曲線交于不同的兩點A、B,是否存在實數(shù)k,使得以線段AB為直徑的圓經(jīng)過點D(0,-2)?若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設直線l與球O有且只有一個公共點P,從直線l出發(fā)的兩個半平面α,β截球O的兩個截面圓的半徑分別為1和
3
,二面角α-l-β的平面角為
π
2
,則球O的表面積為( 。

查看答案和解析>>

同步練習冊答案