【題目】在某服裝商場,當某一季節(jié)即將來臨時,季節(jié)性服裝的價格呈現(xiàn)上升趨勢.設一種服裝原定價為每件70元,并且每周(7天)每件漲價6元,5周后開始保持每件100元的價格平穩(wěn)銷售;10周后,當季節(jié)即將過去時,平均每周每件降價6元,直到16周末,該服裝不再銷售.
(1)試建立每件的銷售價格(單位:元)與周次之間的函數(shù)解析式;
(2)若此服裝每件每周進價(單位:元)與周次之間的關(guān)系為,,試問該服裝第幾周的每件銷售利潤最大?(每件銷售利潤=每件銷售價格-每件進價)
科目:高中數(shù)學 來源: 題型:
【題目】設, 滿足約束條件,則的最大值為_______.
【答案】4
【解析】,畫出可行域如下圖所示,由圖可知,目標函數(shù)在點處取得最大值為.
[點睛]本小題主要考查線性規(guī)劃的基本問題,考查了指數(shù)的運算. 畫二元一次不等式或表示的平面區(qū)域的基本步驟:①畫出直線(有等號畫實線,無等號畫虛線);②當時,取原點作為特殊點,判斷原點所在的平面區(qū)域;當時,另取一特殊點判斷;③確定要畫不等式所表示的平面區(qū)域.
【題型】填空題
【結(jié)束】
14
【題目】已知數(shù)列的前項和公式為,若,則數(shù)列的前項和__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .
(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標方程;
( Ⅱ ) 設直線 與軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.
【答案】(1);.
(2).
【解析】【試題分析】(I)利用圓心和半徑,寫出圓的參數(shù)方程,將圓的極坐標方程展開后化簡得直角坐標方程.(II)求得兩點的坐標, 設點,代入向量,利用三角函數(shù)的值域來求得取值范圍.
【試題解析】
(Ⅰ)圓的參數(shù)方程為(為參數(shù)).
直線的直角坐標方程為.
(Ⅱ)由直線的方程可得點,點.
設點,則 .
.
由(Ⅰ)知,則 .
因為,所以.
【題型】解答題
【結(jié)束】
23
【題目】選修4-5:不等式選講
已知函數(shù), .
(Ⅰ)若對于任意, 都滿足,求的值;
(Ⅱ)若存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某人在微信群中發(fā)了一個8元“拼手氣”紅包,被甲、乙、丙三人搶完,若三人均領到整數(shù)元,且每人至少領到1元,則甲領到的錢數(shù)不少于其他任何人的概率為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.
(1)求的極坐標方程與的直角坐標方程;
(2)設點的極坐標為, 與相交于兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設有一組圓.下列四個命題正確的是( )
A. 存在,使圓與軸相切
B. 存在一條直線與所有的圓均相交
C. 存在一條直線與所有的圓均不相交
D. 所有的圓均不經(jīng)過原點
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù): ,其中是儀器的月產(chǎn)量.(注:總收益=總成本+利潤)
(1)將利潤表示為月產(chǎn)量的函數(shù);
(2)當月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,定長為3的線段兩端點、分別在軸,軸上滑動,在線段上,且.
(1)求點的軌跡的方程;
(2)設點是軌跡上一點,從原點向圓作兩條切線分別與軌跡交于點,,直線,的斜率分別記為,.
①求證:;
②求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分12分)
已知橢圓的中心在原點,焦點在軸上,橢圓上的點到焦點的距離的最
小值為,離心率為。
(I)求橢圓的方程;
(Ⅱ)過點(1,0)作直線交于、兩點,試問:在軸上是否存在一個定點,使為定值?若存在,求出這個定點的坐標;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com