直線(xiàn)與曲線(xiàn)有且只有一個(gè)交點(diǎn),則的取值范圍是(    )

A.        B. 

C.      D.非A、B、C的結(jié)論

 

【答案】

B

【解析】解:由題意可知:曲線(xiàn)方程表示一個(gè)在y軸右邊的單位圓的一半,

則圓心坐標(biāo)為(0,0),圓的半徑r=1,

畫(huà)出相應(yīng)的圖形,如圖所示:

∵當(dāng)直線(xiàn)y=x+b過(guò)(0,-1)時(shí),把(0,-1)代入直線(xiàn)方程得:b=-1,

當(dāng)直線(xiàn)y=x+b過(guò)(0,1)時(shí),把(0,1)代入直線(xiàn)方程得:b=1,

∴當(dāng)-1<b≤1時(shí),直線(xiàn)y=x+b與半圓只有一個(gè)交點(diǎn)時(shí),

又直線(xiàn)y=x+b與半圓相切時(shí),圓心到直線(xiàn)的距離d=r,即|b|  2 =1,

解得:b= (舍去)或b=-,

綜上,直線(xiàn)與曲線(xiàn)只有一個(gè)交點(diǎn)時(shí),b的取值范圍為-1<b≤1或b=-  .

故選B

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x2-ax+1)ex(a為常數(shù),e為自然對(duì)數(shù)的底)
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=0,且經(jīng)過(guò)點(diǎn)P(0,t)(t≠1)有且只有一條直線(xiàn)與曲線(xiàn)f(x)相切,求t的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)已知圓O:x2+y2=4和點(diǎn)M(1,a),若實(shí)數(shù)a>0且過(guò)點(diǎn)M有且只有一 條直線(xiàn)與圓O相切,求實(shí)數(shù)a的值,并求出切線(xiàn)方程;
(Ⅱ)過(guò)點(diǎn)(
2
,0)引直線(xiàn)l與曲線(xiàn)y=
1-x2
相交于A(yíng),B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)△ABO的面積取得最大值時(shí),求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:

①過(guò)一點(diǎn)與已知曲線(xiàn)相切的直線(xiàn)有且只有一條;②函數(shù)的對(duì)稱(chēng)中心是;③對(duì)任意實(shí)數(shù)a,b則④取一根長(zhǎng)為3m的繩子,拉直后在任意位置剪斷,那么剪得兩段的長(zhǎng)度都不少于1m的概率是;⑤如果△A1B1C1的三個(gè)內(nèi)角的余弦值分別等于△A2B2C2的三個(gè)內(nèi)角的正弦值,則△A1B1C1為銳角三角形,△A2B2C2為鈍角三角形.其中真命題的序號(hào)是             (將所有真命題的序號(hào)都填上).      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省資陽(yáng)市高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

下列是有關(guān)直線(xiàn)與圓錐曲線(xiàn)的命題:
①過(guò)點(diǎn)(2,4)作直線(xiàn)與拋物線(xiàn)y2=8x有且只有一個(gè)公共點(diǎn),這樣的直線(xiàn)有2條;
②過(guò)拋物線(xiàn)y2=4x的焦點(diǎn)作一條直線(xiàn)與拋物線(xiàn)相交于A(yíng),B兩點(diǎn),它們的橫坐標(biāo)之和等于5,則這樣的直線(xiàn)有且僅有兩條;
③過(guò)點(diǎn)(3,1)作直線(xiàn)與雙曲線(xiàn)有且只有一個(gè)公共點(diǎn),這樣的直線(xiàn)有3條;
④過(guò)雙曲線(xiàn)的右焦點(diǎn)作直線(xiàn)l交雙曲線(xiàn)于A(yíng),B兩點(diǎn),若|AB|=4,則滿(mǎn)足條件的直線(xiàn)l有3條;
⑤已知雙曲線(xiàn)和點(diǎn)A(1,1),過(guò)點(diǎn)A能作一條直線(xiàn)l,使它與雙曲線(xiàn)交于P,Q兩點(diǎn),且點(diǎn)A恰為線(xiàn)段PQ的中點(diǎn).
其中說(shuō)法正確的序號(hào)有    .(請(qǐng)寫(xiě)出所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年河南省實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)押題卷2(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=(x2-ax+1)ex(a為常數(shù),e為自然對(duì)數(shù)的底)
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=0,且經(jīng)過(guò)點(diǎn)P(0,t)(t≠1)有且只有一條直線(xiàn)與曲線(xiàn)f(x)相切,求t的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案