已知cosα=-
4
5
,且α為第三象限角,求sinα及sin2α的值.
考點:同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:由cosα的值及α為第三象限角,利用同角三角函數(shù)間基本關(guān)系求出sinα的值,sin2α利用二倍角的正弦函數(shù)公式化簡后,將各自的值代入計算即可求出值.
解答: 解:∵cosα=-
4
5
,且α為第三象限角,
∴sinα=-
1-cos2α
=-
3
5
,
則sin2α=2sinαcosα=
24
25
點評:此題考查了同角三角函數(shù)基本關(guān)系的運用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列表格提供了兩個變量x與y之間的一組對應值,已知x,y間存在線性相關(guān)關(guān)系,且求得y關(guān)于x的線性回歸直線方程為
y
=0.7x+0.35,那么表中t的值為( 。
x 3 4 5 6
y 2.5 3.5 4 t
A、3B、3.15C、3.5D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二項式(x2-
1
x
n的展開式中各項系數(shù)的和為( 。
A、32B、-32C、0D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了了解調(diào)研高一年級新學生的智力水平,某校按l 0%的比例對700名高一學生按性別分別進行“智力評分”抽樣檢查,測得“智力評分”的頻數(shù)分布表如表l,表2.
表1:男生“智力評分”頻數(shù)分布表
智力評分 [160,165) [165,170) [170,175) [175,180) [180,185) [185,190)
頻數(shù) 2 5 14 13 4 2
表2:女生“智力評分”頻數(shù)分布表
智力評分 [150,155) [155,160) [160,165) [165,170) [170,175) [175,180)
頻數(shù) 1 7 12 6 3 1
(Ⅰ)求高一的男生人數(shù)并完成如圖所示的男生的頻率分布直方圖;
(Ⅱ)估計該校學生“智力評分”在[165,180)之間的概率;
(Ⅲ)從樣本中“智力評分”在[180,190)的男生中任選2人,求至少有1人“智力評分”在[185,190)之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

角A、B、C為△ABC的三個內(nèi)角,且角B滿足sinB+cos(B+
π
6
)=
3
2

(1)求角B的值;
(2)若sinA+sinC>k恒成立,試求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是某幾何體的三視圖,則該幾何體的體積等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用綜合法或分析法證明以下命題:設(shè)a,b均為正實數(shù),且a≠b,求證:a3+b3>a2b+ab2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-3x的圖象和函數(shù)g(x)=2x2+x+m的圖象在y軸右側(cè)有兩個不同的交點,設(shè)兩個交點分別為A(x1,y1),B(x2,y2).
(Ⅰ)求實數(shù)m的取值范圍;
(Ⅱ)設(shè)直線AB的斜率為k,求證:x1x2<2(x1+x2-2)<k.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用綜合法證明:[sinθ(1+sinθ)+cosθ(1+cosθ)][
2
sin(θ+
π
4
)-1]=sin2θ.

查看答案和解析>>

同步練習冊答案