(2009•浦東新區(qū)二模)半徑為1的球面上的四點A、B、C、D是正四面體的頂點,則A與B兩點間的球面距離為
π-arccos
1
3
π-arccos
1
3
分析:由題意將正四面體擴(kuò)展為正方體求出正四面體的棱長,結(jié)合三角形利用余弦定理求出∠AOB,然后求出A與B兩點間的球面距離即可.
解答:解:半徑為1的球面上的四點A,B,C,D是正四面體的頂點,
所以正四面體擴(kuò)展為正方體的外接球與圓柱球相同,
正方體的對角線就是外接球的直徑,
所以正四面體的棱長為:
2
6
3
;
(
2
6
3
)
2
=2-2cos∠AOB

cos∠AOB=-
1
3

A與B兩點間的球面距離為:
1×arccos(-
1
3
)=arccos(-
1
3
)=π-arccos
1
3

故答案為:π-arccos
1
3
點評:本小題主要考查球面距離及相關(guān)計算等基礎(chǔ)知識,考查運算求解能力,考查空間想象力.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•浦東新區(qū)一模)如圖:某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設(shè)污水凈化管道(Rt△FHE,H是直角頂點)來處理污水,管道越短,鋪設(shè)管道的成本越低.設(shè)計要求管道的接口H是AB的中點,E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,AD=10
3
米,記∠BHE=θ.
(1)試將污水凈化管道的長度L表示為θ的函數(shù),并寫出定義域;
(2)若sinθ+cosθ=
3
+1
2
,求此時管道的長度L;
(3)問:當(dāng)θ取何值時,鋪設(shè)管道的成本最低?并求出此時管道的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•浦東新區(qū)一模)已知數(shù)列{an}是等比數(shù)列,其前n項和為Sn,若S2=12,S3=a1-6,則
limn→∞
Sn
=
16
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•浦東新區(qū)一模)函數(shù)y=2sin2x的最小正周期為
π
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•浦東新區(qū)一模)對于函數(shù)f1(x),f2(x),h(x),如果存在實數(shù)a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).
(1)下面給出兩組函數(shù),h(x)是否分別為f1(x),f2(x)的生成函數(shù)?并說明理由.
第一組:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+
π
3
)
;
第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)設(shè)f1(x)=log2x,f2(x)=log
1
2
x,a=2,b=1
,生成函數(shù)h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實數(shù)t的取值范圍.
(3)設(shè)f1(x)=x(x>0),f2(x)=
1
x
(x>0)
,取a>0,b>0生成函數(shù)h(x)圖象的最低點坐標(biāo)為(2,8).若對于任意正實數(shù)x1,x2且x1+x2=1,試問是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•浦東新區(qū)二模)在△ABC中,A、B、C所對的邊分別為a、b、c已知a=2
3
 , c=2
,且
.
sinCsinB0
0b-2c
cosA01
.
=0
,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案