求適合下列條件的橢圓標(biāo)準(zhǔn)方程.
(1)已知橢圓的焦點(diǎn)x軸上,且a=5,b=3;
(2)已知橢圓的焦點(diǎn)在y軸上,a=4,離心率為
12
分析:由題設(shè)條件,利用橢圓的概念直接求解即可.
解答:解:(1)∵橢圓的焦點(diǎn)x軸上,
∴設(shè)橢圓方程為
x2  
a2
+
y2
b2
=1
,a>b>0.
∵a=5,b=3,
∴橢圓方程為:
x2
25
+
y2
9
=1

(2)∵橢圓的焦點(diǎn)在y軸上,
∴設(shè)橢圓方程為
x2
b2
+
y2
a2
=1
,a>b>0.
∵a=4,離心率e=
c
a
=
1
2

∴a=4,c=2,b2=16-4=12,
∴橢圓方程為
x2
12
+
y2
16
=1
點(diǎn)評(píng):本題考查橢圓方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意熟練掌握橢圓的基本概念.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:
(1)焦點(diǎn)在y軸上,焦距是4,且經(jīng)過(guò)點(diǎn)M(3,2);
(2)焦距是10,且橢圓上一點(diǎn)到兩焦點(diǎn)的距離的和為26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求適合下列條件的橢圓的標(biāo)準(zhǔn)方程.
(1)離心率e=
2
3
,短軸長(zhǎng)為8
5

(2)焦點(diǎn)在y軸上,與y軸的一個(gè)交點(diǎn)為P(0,-10),P到它較近的一個(gè)焦點(diǎn)的距離等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求適合下列條件的橢圓的標(biāo)準(zhǔn)方程;
(1)焦點(diǎn)在x軸上,焦距等于4,并且經(jīng)過(guò)點(diǎn)P(3,-2
6
)
;
(2)長(zhǎng)軸是短軸的3倍,且經(jīng)過(guò)點(diǎn)P(3,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:
(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-4,0)和(4,0),且橢圓經(jīng)過(guò)點(diǎn)(5,0);
(2)焦點(diǎn)在y軸上,且經(jīng)過(guò)兩個(gè)點(diǎn)(0,2)和(1,0).

查看答案和解析>>

同步練習(xí)冊(cè)答案