已知數(shù)列是公比為q的等比數(shù)列,且,成等差數(shù)列,則q=
A.1或B.1C.D.-2
A
本試題主要是考查了等差數(shù)列和等比數(shù)列的通項公式的運用。
由題意2a3=a1+a2,∴2a1q2=a1q+a1,∴2q2=q+1,∴q=1或q=-故選A。
解決該試題的關鍵是等差中性的運用,以及運用數(shù)列的通項公式解方程。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

把正奇數(shù)數(shù)列中的數(shù)按上小下大、左小右大的原則排成如下三角形數(shù)表:
1
3   5
7    9   11
………………………
……………………………
是位于這個三角形數(shù)表中從上往下數(shù)第行、從左往右數(shù)第個數(shù).
(1)若,求的值;
(2)若記三角形數(shù)表中從上往下數(shù)第行各數(shù)的和為,求證.(本題滿分14分)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列的前項和為,滿足
(1)求;
(2)令,求數(shù)列的前項和.
(3)設,若對任意的正整數(shù),均有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知數(shù)列的前項和,且的最大值為8.
(1)確定的值;
(2)求數(shù)列的通項公式;
(3)求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知是4和16的等差中項,則                   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列的前項和為,且,數(shù)列中,,點在直線上.
(I)求數(shù)列的通項
(II) 設,求數(shù)列的前n項和,并求滿足的最大正整數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
是等差數(shù)列,是各項都為正數(shù)的等比數(shù)列,且
.   
(Ⅰ)求、的通項公式;    (Ⅱ)求數(shù)列的前n項和。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題12分)設是公比大于1的等比數(shù)列,已知,且構成等差數(shù)列.
(1)求數(shù)列的通項公式.(2)令求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在等差數(shù)列{ }中,(    )
A.12B.24C.36D.48

查看答案和解析>>

同步練習冊答案