【題目】《中國(guó)制造2025》是經(jīng)國(guó)務(wù)院總理李克強(qiáng)簽批,由國(guó)務(wù)院于2015年5月印發(fā)的部署全面推進(jìn)實(shí)施制造強(qiáng)國(guó)的戰(zhàn)略文件,是中國(guó)實(shí)施制造強(qiáng)國(guó)戰(zhàn)略第一個(gè)十年的行動(dòng)綱領(lǐng).制造業(yè)是國(guó)民經(jīng)濟(jì)的主體,是立國(guó)之本、興國(guó)之器、強(qiáng)國(guó)之基.發(fā)展制造業(yè)的基本方針為質(zhì)量為先,堅(jiān)持把質(zhì)量作為建設(shè)制造強(qiáng)國(guó)的生命線.某制造企業(yè)根據(jù)長(zhǎng)期檢測(cè)結(jié)果,發(fā)現(xiàn)生產(chǎn)的產(chǎn)品質(zhì)量與生產(chǎn)標(biāo)準(zhǔn)的質(zhì)量差都服從正態(tài)分布N(μ,σ2),并把質(zhì)量差在(μ﹣σ,μ+σ)內(nèi)的產(chǎn)品為優(yōu)等品,質(zhì)量差在(μ+σ,μ+2σ)內(nèi)的產(chǎn)品為一等品,其余范圍內(nèi)的產(chǎn)品作為廢品處理.優(yōu)等品與一等品統(tǒng)稱為正品.現(xiàn)分別從該企業(yè)生產(chǎn)的正品中隨機(jī)抽取1000件,測(cè)得產(chǎn)品質(zhì)量差的樣本數(shù)據(jù)統(tǒng)計(jì)如下:
(1)根據(jù)頻率分布直方圖,求樣本平均數(shù)
(2)根據(jù)大量的產(chǎn)品檢測(cè)數(shù)據(jù),檢查樣本數(shù)據(jù)的方差的近似值為100,用樣本平均數(shù)作為μ的近似值,用樣本標(biāo)準(zhǔn)差s作為σ的估計(jì)值,求該廠生產(chǎn)的產(chǎn)品為正品的概率.(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表)
[參考數(shù)據(jù):若隨機(jī)變量ξ服從正態(tài)分布N(μ,σ2),則:P(μ﹣σ<ξ≤μ+σ)≈0.6827,P(μ﹣2σ<ξ≤μ+2σ)≈0.9545,P(μ﹣3σ<ξ≤μ+3σ)≈0.9973.
(3)假如企業(yè)包裝時(shí)要求把3件優(yōu)等品球和5件一等品裝在同一個(gè)箱子中,質(zhì)檢員每次從箱子中摸出三件產(chǎn)品進(jìn)行檢驗(yàn),記摸出三件產(chǎn)品中優(yōu)等品球的件數(shù)為X,求X的分布列以及期望值.
【答案】(1)70; (2); (3)分布列見(jiàn)解析,.
【解析】
(1)結(jié)合頻率分布直方圖,用同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表即可求得平均值,利用平均數(shù)的計(jì)算公式,即可求解;
(2)由題意,可得,得到正品概率
,再利用正態(tài)分布曲線的性質(zhì),即可求解;
(3)得出所有可能為,再利用超幾何分布求出每個(gè)的取值所對(duì)應(yīng)的概率即可得到分布列,然后求出數(shù)學(xué)期望即可.
(1)由頻率分布直方圖中平均數(shù)的計(jì)算公式,
可得
.
(2)由題意可知,檢查樣本數(shù)據(jù)的方差的近似值為100,即樣本方差,
所以標(biāo)準(zhǔn)差,所以隨機(jī)變量,
可得該廠生產(chǎn)的產(chǎn)品為正品的概率:
.
(3)由題意,隨機(jī)變量所有可能為,
則,,,
,
所以隨機(jī)變量的分布列為:
0 | 1 | 2 | 3 | |
|
所以隨機(jī)變量的期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐的底面ABCD是邊長(zhǎng)為3的正方形,平面ABCD,,E為PD中點(diǎn),過(guò)EB作平面分別與線段PA、PC交于點(diǎn)M,N,且,則________;四邊形EMBN的面積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正實(shí)數(shù)a,b,c滿足a3+b3+c3=1.
(Ⅰ)證明:a+b+c≥(a2+b2+c2)2;
(Ⅱ)證明:a2b+b2c+c2a≤1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)f(x)=2sinx(sinxcosx)﹣1圖象向右平移個(gè)單位得函數(shù)g(x)的圖象,則下列命題中正確的是( 。
A.f(x)在(,)上單調(diào)遞增
B.函數(shù)f(x)的圖象關(guān)于直線x對(duì)稱
C.g(x)=2cos2x
D.函數(shù)g(x)的圖象關(guān)于點(diǎn)(,0)對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心為坐標(biāo)原點(diǎn)O,橢圓短半軸長(zhǎng)為1,動(dòng)點(diǎn) 在直線,(為長(zhǎng)半軸,為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)求以OM為直徑且被直線截得的弦長(zhǎng)為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過(guò)點(diǎn)F作OM的垂線與以OM為直徑的圓交于點(diǎn)N.求證:線段ON的長(zhǎng)為定值,并求出這個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線 ,其焦點(diǎn)到準(zhǔn)線的距離為2,直線與拋物線交于,兩點(diǎn),過(guò),分別作拋物線的切線,,與交于點(diǎn).
(Ⅰ)求的值;
(Ⅱ)若,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】七巧板是中國(guó)古代勞動(dòng)人民的發(fā)明,其歷史至少可以追溯到公元前一世紀(jì),后清陸以湉《冷廬雜識(shí)》卷一中寫(xiě)道“近又有七巧圖,其式五,其數(shù)七,其變化之式多至千余”在18世紀(jì),七巧板流傳到了國(guó)外,被譽(yù)為“東方魔板”,至今英國(guó)劍橋大學(xué)的圖書(shū)館里還珍藏著一部《七巧新譜》.完整圖案為一正方形(如圖):五塊等腰直角三角形、一塊正方形和一塊平行四邊形,如果在此正方形中隨機(jī)取一點(diǎn),那么此點(diǎn)取自陰影部分的概率是( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com