【題目】甲同學(xué)參加化學(xué)競賽初賽,考試分為筆試、口試、實驗三個項目,各單項通過考試的概率依次為、、,筆試、口試、實驗通過考試分別記4分、2分、4分,沒通過的項目記0分,各項成績互不影響.
(Ⅰ)若規(guī)定總分不低于8分即可進(jìn)入復(fù)賽,求甲同學(xué)進(jìn)入復(fù)賽的概率;
(Ⅱ)記三個項目中通過考試的個數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.
【答案】(Ⅰ);(Ⅱ)答案見解析.
【解析】
試題分析:(Ⅰ)記筆試、口試、實驗獨立通過考試分別為事件,則則事件“甲同學(xué)進(jìn)入復(fù)賽的”表示為,由與互斥,且、、彼此獨立,能求出甲同學(xué)進(jìn)入復(fù)賽的概率;(Ⅱ)隨機變量的所有可能取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出的分布列和數(shù)學(xué)期望.
試題解析:(Ⅰ)記筆試、口試、實驗獨立通過考試分別為事件,
則事件“甲同學(xué)進(jìn)入復(fù)賽的”表示為.
∵與互斥,且彼此獨立,
∴.
(Ⅱ)隨機變量的所有可能取值為0,1,2,3.
,
,
,
.
所以,隨機變量的分布列為
數(shù)學(xué)期望.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若在內(nèi)單調(diào)遞減,求實數(shù)的取值范圍;
(Ⅱ)若函數(shù)有兩個極值點分別為,,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)曲線上一點到焦點的距離為3.
(1)求曲線C方程;
(2)設(shè)P,Q為曲線C上不同于原點O的任意兩點,且滿足以線段PQ為直徑的圓過原點O,試問直線PQ是否恒過定點?若恒過定點,求出定點坐標(biāo);若不恒過定點,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù),為函數(shù)的導(dǎo)函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)與函數(shù)存在相同的零點,求實數(shù)a的值;
(3)求函數(shù)在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:()的兩焦點與短軸兩端點圍成面積為12的正方形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)我們稱圓心在橢圓上運動,半徑為的圓是橢圓的“衛(wèi)星圓”.過原點O作橢圓C的“衛(wèi)星圓”的兩條切線,分別交橢圓C于A、B兩點,若直線、的斜率為、,當(dāng)時,求此時“衛(wèi)星圓”的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù).
(1)當(dāng)時,證明:對;
(2)若函數(shù)在上存在極值,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題錯誤的個數(shù)是( )
①在中,是的充要條件;
②若向量滿足,則與的夾角為鈍角;
③若數(shù)列的前項和,則數(shù)列為等差數(shù)列;
④若,則“”是“”的必要不充分條件.
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com