已知某離散型隨機(jī)變量?分布列如下,則常數(shù)k的值為( 。
 ?123n
Pk3k5k(2n-1)k
A、
1
n2
B、
1
n
C、
1
2n-1
D、
1
n(2n-1)
考點:離散型隨機(jī)變量及其分布列
專題:概率與統(tǒng)計
分析:由已知得k+3k+5k+…+(2n-1)k=
n(k+2nk-k)
2
=kn2=1,由此能求出結(jié)果.
解答: 解:由某離散型隨機(jī)變量?分布列,知:
k+3k+5k+…+(2n-1)k=
n(k+2nk-k)
2
=kn2=1,
解得k=
1
n2

故選:A.
點評:本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意離散型隨機(jī)變量?分布列的性質(zhì)和等差數(shù)列性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知D為△ABC的邊BC的中點,△ABC所在平面內(nèi)有一個點P,滿足
PA
=
PB
+
PC
,則
|
PD
|
|
AD
|
的值為( 。
A、
1
3
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和Sn=
n(n+1)(4n-1)
6
,n∈N*
(1)求a1的值.
(2)求數(shù)列{an}的通項公式.
(3)證明:對一切正整數(shù)n,有
1
a12
+
4
a22
+…
n2
an2
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形A A1 C1C為矩形,四邊形CC1B1 B為菱形,且平面CC1B1 B⊥A A1 C1C,D,E分別是A1 B1和C1C的中點.求證:(1)BC1⊥平面AB1C;
(2)DE∥平面AB1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=ln
1+x2
1-x2
的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四面體ABCD中,若M、N分別是棱AD、BC的中點,AC=BD=6,MN=3
2
,求MN與AC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實數(shù)x,y,z 滿足x2+y2+z2=1,則
2
xy+yz的最大值是為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且a1=2,a2=8,a3=24,{an+1-2an}為等比數(shù)列.
(1)求證:{
an
2n
}是等差數(shù)列
(2)求
1
Sn
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)sinθ,cosθ使方程2x2-(
3
+1)x+2m=0的兩根,求m與
sinθ
1-cotθ
+
cosθ
1-tanθ
的值.

查看答案和解析>>

同步練習(xí)冊答案