橢圓的左、右焦點分別為F1,F(xiàn)2,過F2軸的垂線與
橢圓的一個交點為P,若,則橢圓的離心率           
根據(jù)題意可知,的直角邊為橢圓通經(jīng)的一半代入整理得:
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓:的右焦點與拋物線的焦點相同,且的離心率,又為橢圓的左右頂點,其上任一點(異于).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線交直線于點,過作直線的垂線交軸于點,求的坐標;
(Ⅲ)求點在直線上射影的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,點所在的平面內運動且保持,則的最大值和最小值分別是(   )
A. B.10和2  C.5和1D.6和4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的左,右兩個頂點分別為.曲線是以、兩點為頂點,離心率為的雙曲線.設點在第一象限且在曲線上,直線與橢圓相交于另一點
(1)求曲線的方程;
(2)設、兩點的橫坐標分別為、,證明:;
(3)設(其中為坐標原點)的面積分別為,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知直線經(jīng)過橢圓S:的一個焦點和一個頂點.
(1)求橢圓S的方程;
(2)如圖,M,N分別是橢圓S的頂點,過坐標原點的直線交橢圓于P、A兩點,其中P在第一象限,過P作軸的垂線,垂足為C,連接AC,并延長交橢圓于點B,設直線PA的斜率為k.
①若直線PA平分線段MN,求k的值;
②對任意,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓C過點(1,0),且圓心在x軸的正半軸上,直線l:y=x-1被圓C所截得的弦長為.
(1)求過圓心且與直線l垂直的直線m方程;
(2)點P在直線m上,求以A(-1,0),B(1,0)為焦點且過P點的長軸長最小的橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是橢圓的左、右焦點,點在橢圓上運動,則的最大值是_____

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的一個頂點和一個焦點分別是直線x+3y-6=0與兩坐標軸的交點,則橢圓的標準方程為                         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知A1,A2,B是橢圓=1(a>b>0)的頂點(如圖),直線l與橢圓交于異于頂點的P,Q兩點,且l∥A2B,若橢圓的離心率是,且|A2B|=。
(1)求此橢圓的方程;
(2)設直線A1P和直線BQ的傾斜角分別為α,β,試判斷α+β是否為定值?若是,求出此定值;若不是,說明理由。

查看答案和解析>>

同步練習冊答案