【題目】有下列四個命題:
①若p是q的充分不必要條件,則¬p是¬q的必要不充分條件;
②若命題p:x≥0,x2+1>0,則¬p:x0<0,x02+1≤0;
③在△ABC中,A>B是sinA>sinB的充要條件;
④命題:當(dāng)1<t<4時方程1表示焦點(diǎn)在x軸上的橢圓,為真命題.
其中真命題的序號是_____.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)a=1時,若關(guān)于的不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面平面
,
,四邊形
為平行四邊形,
,
為線段
的中點(diǎn),點(diǎn)
滿足
.
(Ⅰ)求證:直線平面
;
(Ⅱ)求證:平面平面
;
(Ⅲ)若平面平面
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和
,
是等差數(shù)列,且
.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令.求數(shù)列
的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓(
)的左、右焦點(diǎn)為
,右頂點(diǎn)為
,上頂點(diǎn)為
.已知
.
(1)求橢圓的離心率;
(2)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段
為直徑的圓經(jīng)過點(diǎn)
,經(jīng)過原點(diǎn)
的直線
與該圓相切,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
為常數(shù),
是自然對數(shù)的底數(shù)),曲線
在點(diǎn)
處的切線與
軸平行.
(Ⅰ)求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),其中
為
的導(dǎo)函數(shù).證明:對任意
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足,且
.
(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列
的通項(xiàng)公式;
(2)求數(shù)列的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的離心率為
,且與拋物線
交于
,
兩點(diǎn),
(
為坐標(biāo)原點(diǎn))的面積為
.
(1)求橢圓的方程;
(2)如圖,點(diǎn)為橢圓上一動點(diǎn)(非長軸端點(diǎn))
,
為左、右焦點(diǎn),
的延長線與橢圓交于
點(diǎn),
的延長線與橢圓交于
點(diǎn),求
面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com