【題目】已知數(shù)列的各項均為正數(shù), 是數(shù)列的前項和,且.

1)求數(shù)列的通項公式;

2)已知,求的值.

【答案】(1) (2)

【解析】試題分析:(1)由題意知,解得,可得兩式相減能夠推出數(shù)列是以為首項, 為公差的等差數(shù)列,所以;(2)結合(1)可得 ,利用錯位相減法可得的值.

試題解析:(1)當n = 1時,解出a1 = 3, (a1 = 0舍)

又4Sn = an2 + 2an-3 ①

時 4sn-1 = + 2an-1-3 ②

①-② , 即,

,

),

是以3為首項,2為公差的等差數(shù)列,

(2)

④-③

方法點睛】本題主要考查等比數(shù)列和等差數(shù)列的通項以及錯位相減法求數(shù)列的的前 項和,屬于中檔題.一般地,如果數(shù)列是等差數(shù)列, 是等比數(shù)列,求數(shù)列的前項和時,可采用“錯位相減法”求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解, 在寫出“與“的表達式時應特別注意將兩式“錯項對齊”以便下一步準確寫出“”的表達式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩位學生參加數(shù)學競賽培訓,在培訓期間他們參加的5次預寒成績記錄如下:

甲:82,82,79,95,87

乙:95,75,80,90,85

(1)用莖葉圖表示這兩組數(shù)據(jù);

(2)求甲、乙兩人成績的平均數(shù)與方差;

(3)若現(xiàn)要從中選派一人參加數(shù)學競賽,你認為選派哪位學生參加合適,說明理由?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和為Sn滿足2Sn=an+1﹣2n+1+1,n∈N* , 且a1 , a2+5,a3成等差數(shù)列.
(1)求a1的值;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】教育學家分析發(fā)現(xiàn)加強語文樂隊理解訓練與提高數(shù)學應用題得分率有關,某校興趣小組為了驗證這個結論,從該校選擇甲乙兩個同軌班級進行試驗,其中甲班加強閱讀理解訓練,乙班常規(guī)教學無額外訓練,一段時間后進行數(shù)學應用題測試,統(tǒng)計數(shù)據(jù)情況如下面的列聯(lián)表(單位:人)

(1)能夠據(jù)此判斷有97.5%把握熱內(nèi)加強語文閱讀訓練與提高數(shù)學應用題得分率有關?

(2)經(jīng)過多次測試后,小明正確解答一道數(shù)學應用題所用的時間在5—7分鐘,小剛正確解得一道數(shù)學應用題所用的時間在6—8分鐘,現(xiàn)小明、小剛同時獨立解答同一道數(shù)學應用題,求小剛比小明現(xiàn)正確解答完的概率;

(3)現(xiàn)從乙班成績優(yōu)秀的8名同學中任意抽取兩人,并對他們點答題情況進行全程研究,記A、B兩人中被抽到的人數(shù)為X,求X的分布列及數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,側面與側面都是菱形, ,

(1)求證:

(2)若, 的中點為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),關于的不等式只有兩個整數(shù)解,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓恰好經(jīng)過橢圓的兩個焦點和兩個頂點.

(1)求橢圓的方程;

(2)經(jīng)過原點的直線 (不與坐標軸重合)交橢圓兩點, 軸,垂足為,連接并延長交橢圓,證明:以線段為直徑的圓經(jīng)過點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等比數(shù)列{an}中,a2﹣a1=2,且2a2為3a1和a3的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)設bn=2log3an+1,且數(shù)列{ }的前n項和為Tn . 求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設命題實數(shù)滿足),命題實數(shù)滿足.

1)若且“”為真,求實數(shù)的取值范圍;

(2)若的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案