【題目】如圖,在中,,,分別為,的中點是由繞直線旋轉(zhuǎn)得到,連結(jié),.

1)證明:平面;

2)若,棱上是否存在一點,使得?若存在,確定點 的位置;若不存在,請說明理由.

【答案】1)見解析(2)存在,的中點

【解析】

1)要證平面,則證;證由平面幾何知識可得,證,只需證,即證平面,利用線面垂直判定可得.

2,等體積轉(zhuǎn)化,由,可解.

1)依題意得,

所以

因為分別為,的中點,

所以

因為

所以

又因為沿旋轉(zhuǎn)得到,

所以,平面,平面

平面

所以,即

所以平面

解法一:(2)若,

因為

所以,

所以的中點

解法二:(2)因為,,

所以,

,所以

由(1)知平面

,

所以

由(1)知,在中,

,即

解得

所以為正三角形,

,所以M的中點

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面為菱形,的中點為O,且平面

1)證明:;

2)若,,求到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知橢圓過點,,是兩個焦點.以橢圓的上頂點為圓心作半徑為的圓,

1)求橢圓的方程;

2)存在過原點的直線,與圓分別交于,兩點,與橢圓分別交于,兩點(點在線段上),使得,求圓半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=|2x1|3|x+1|,設(shè)fx)的最大值為M.

1)求M

2)若正數(shù)a,b滿足Mab,證明:a4b+ab4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了提高生產(chǎn)效率,對生產(chǎn)設(shè)備進(jìn)行了技術(shù)改造,為了對比技術(shù)改造后的效果,采集了技術(shù)改造前后各20次連續(xù)正常運行的時間長度(單位:天)數(shù)據(jù),整理如下:

改造前:19,3122,26,34,1522,2540,3518,16,28,23,34,15,2620,2421

改造后:32,294118,2633,42,34,37,39,33,22,42,354327,41,37,38,36

1)完成下面的列聯(lián)表,并判斷能否有99%的把握認(rèn)為技術(shù)改造前后的連續(xù)正常運行時間有差異?

超過30

不超過30

改造前

改造后

2)工廠的生產(chǎn)設(shè)備的運行需要進(jìn)行維護(hù),工廠對生產(chǎn)設(shè)備的生產(chǎn)維護(hù)費用包括正常維護(hù)費,保障維護(hù)費兩種.對生產(chǎn)設(shè)備設(shè)定維護(hù)周期為T(即從開工運行到第kT天,k∈N*)進(jìn)行維護(hù).生產(chǎn)設(shè)備在一個生產(chǎn)周期內(nèi)設(shè)置幾個維護(hù)周期,每個維護(hù)周期相互獨立.在一個維護(hù)周期內(nèi),若生產(chǎn)設(shè)備能連續(xù)運行,則只產(chǎn)生一次正常維護(hù)費,而不會產(chǎn)生保障維護(hù)費;若生產(chǎn)設(shè)備不能連續(xù)運行,則除產(chǎn)生一次正常維護(hù)費外,還產(chǎn)生保障維護(hù)費.經(jīng)測算,正常維護(hù)費為0.5萬元/次;保障維護(hù)費第一次為0.2萬元/周期,此后每增加一次則保障維護(hù)費增加0.2萬元.現(xiàn)制定生產(chǎn)設(shè)備一個生產(chǎn)周期(120天計)內(nèi)的維護(hù)方案:T=30,k=12,34.以生產(chǎn)設(shè)備在技術(shù)改造后一個維護(hù)周期內(nèi)能連續(xù)正常運行的頻率作為概率,求一個生產(chǎn)周期內(nèi)生產(chǎn)維護(hù)費的分布列及均值.

附:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一條曲線Cy軸右側(cè),曲線C上任意一點到點的距離減去它到y軸的距離都等于1.

1)求曲線C的方程;

2)直線與軌跡C交于A,B兩點,問:在x軸上是否存在定點,使得直線關(guān)于x軸對稱而與直線的位置無關(guān),若存在,求出點M的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)過點,離心率為.其左、右焦點分別為,O為坐標(biāo)原點.直線l與以線段為直徑的圓相切,且直線l與橢圓C交于不同的A,B兩點.

1)求橢圓C的方程;

2)若滿足,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的多面體ABCDEF滿足:正方形ABCD與正三角形FBC所在的兩個平面互相垂直,FBAEFB2EA.

1)證明:平面EFD⊥平面ABFE;

2)求二面角EFDC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在全球抗擊新冠肺炎疫情期間,我國醫(yī)療物資生產(chǎn)企業(yè)加班加點生產(chǎn)口罩、防護(hù)服、消毒水等防疫物品,保障抗疫一線醫(yī)療物資供應(yīng),在國際社會上贏得一片贊譽(yù).我國某口罩生產(chǎn)企業(yè)在加大生產(chǎn)的同時,狠抓質(zhì)量管理,不定時抽查口罩質(zhì)量,該企業(yè)質(zhì)檢人員從所生產(chǎn)的口罩中隨機(jī)抽取了100個,將其質(zhì)量指標(biāo)值分成以下六組:,,…,,得到如下頻率分布直方圖.

1)求出直方圖中的值;

2)利用樣本估計總體的思想,估計該企業(yè)所生產(chǎn)的口罩的質(zhì)量指標(biāo)值的平均數(shù)和中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間中點值作代表,中位數(shù)精確到0.01);

3)現(xiàn)規(guī)定:質(zhì)量指標(biāo)值小于70的口罩為二等品,質(zhì)量指標(biāo)值不小于70的口罩為一等品.利用分層抽樣的方法從該企業(yè)所抽取的100個口罩中抽出5個口罩,并從中再隨機(jī)抽取2個作進(jìn)一步的質(zhì)量分析,試求這2個口罩中恰好有1個口罩為一等品的概率.

查看答案和解析>>

同步練習(xí)冊答案