某車間共有12名工人,隨機抽取6名,他們某日加工零件個數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).
(1)根據(jù)莖葉圖計算樣本均值.
(2)日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人.根據(jù)莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人?
(3)從該車間12名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.
科目:高中數(shù)學 來源: 題型:解答題
某校高一年級60名學生參加數(shù)學競賽,成績全部在40分至100分之間,現(xiàn)將成績分成以下6段:,據(jù)此繪制了如圖所示的頻率分布直方圖.
(1)求成績在區(qū)間的頻率;
(2)從成績大于等于80分的學生中隨機選3名學生,其中成績在[90,100]內的學生人數(shù)為ξ,求ξ的分布列與均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
農(nóng)科院的專家為了了解新培育的甲、乙兩種麥苗的長勢情況,從甲、乙兩種麥苗的試驗田中各抽取6株麥苗測量麥苗的株高,數(shù)據(jù)如下:(單位:)
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21.
(1)在上面給出的方框內繪出所抽取的甲、乙兩種麥苗株高的莖葉圖;
(2)分別計算所抽取的甲、乙兩種麥苗株高的平均數(shù)與方差,并由此判斷甲、乙兩種麥苗的長勢情況.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
為了解高二某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯(lián)表:
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為.
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.5%的把握認為喜愛打籃球與性別有關?說明你的理由;
下面的臨界值表供參考:
(參考公式K2=,其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設三組實驗數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3)的回歸直線方程是:=x+,使代數(shù)式[y1-(x1+)]2+[y2-(x2+)]2+[y3-(x3+)]2的值最小時,=-,=(,分別是這三組數(shù)據(jù)的橫、縱坐標的平均數(shù)),
若有7組數(shù)據(jù)列表如下:
x | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
y | 4 | 6 | 5 | 6.2 | 8 | 7.1 | 8.6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某城市隨機抽取一年(365天)內100天的空氣質量指數(shù)API的監(jiān)測數(shù)據(jù),結果統(tǒng)計如下:
API | |||||||
空氣質量 | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 中重度污染 | 重度污染 |
天數(shù) | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
| 非重度污染 | 重度污染 | 合計 |
供暖季 | | | |
非供暖季 | | | |
合計 | | | 100 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
為了了解某年段1000名學生的百米成績情況,隨機抽取了若干學生的百米成績,成績全部介于13秒與18秒之間,將成績按如下方式分成五組:第一組[13,14);第二組[14,15);……;第五組[17,18].按上述分組方法得到的頻率分布直方圖如圖3所示,已知圖中從左到右的前3個組的頻率之比為3∶8∶19,且第二組的頻數(shù)為8.
(1)將頻率當作概率,請估計該年段學生中百米成績在[16,17)內的人數(shù);
(2)求調查中隨機抽取了多少個學生的百米成績;
(3)若從第一、五組中隨機取出兩個成績,求這兩個成績的差的絕對值大于1秒的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內,每售出t該產(chǎn)品獲利潤元,未售出的產(chǎn)品,每t虧損元。根據(jù)歷史資料,得到銷售季度內市場需求量的頻率分布直方圖,如圖所示。經(jīng)銷商為下一個銷售季度購進了t該農(nóng)產(chǎn)品,以(單位:t,)表示下一個銷售季度內的市場需求量,(單位:元)表示下一個銷售季度內銷商該農(nóng)產(chǎn)品的利潤。
(1)將表示為的函數(shù);
(2)根據(jù)直方圖估計利潤不少于57000元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點值的概率(例如:若,則取,且的概率等于需求量落入的概率),求利潤的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
2013年9月20日是第25個全國愛牙日。某區(qū)衛(wèi)生部門成立了調查小組,調查 “常吃零食與患齲齒的關系”,對該區(qū)六年級800名學生進行檢查,按患齲齒和不患齲齒分類,得匯總數(shù)據(jù):不常吃零食且不患齲齒的學生有60名,常吃零食但不患齲齒的學生有100名,不常吃零食但患齲齒的學生有140名.
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com