【題目】如圖,橢圓與圓相切,并且橢圓上動(dòng)點(diǎn)與圓上動(dòng)點(diǎn)間距離最大值為.

1)求橢圓的方程;

2)過(guò)點(diǎn)作兩條互相垂直的直線(xiàn),交于兩點(diǎn),與圓的另一交點(diǎn)為,求面積的最大值,并求取得最大值時(shí)直線(xiàn)的方程.

【答案】(1);(2)面積的最大值為,此時(shí)直線(xiàn)的方程為.

【解析】

(1)由題意可得b=1,a﹣1,即可得到橢圓的方程;(2)設(shè)A(x1,y1),B(x2,y2),根據(jù)l2⊥l1,可設(shè)直線(xiàn)l1,l2的方程,分別與橢圓、圓的方程聯(lián)立即可得可得出|AB|、|MN|,即可得到三角形ABC的面積,利用基本不等式的性質(zhì)即可得出其最大值.

(1)橢圓E與圓O:x2+y2=1相切,知b2=1;

又橢圓E上動(dòng)點(diǎn)與圓O上動(dòng)點(diǎn)間距離最大值為,即橢圓中心O到橢圓最遠(yuǎn)距離為,

得橢圓長(zhǎng)半軸長(zhǎng),即;

所以橢圓E的方程:

(2)①當(dāng)l1與x軸重合時(shí),l2與圓相切,不合題意.

②當(dāng)l1⊥x軸時(shí),M(﹣1,0),l1:x=1,,此時(shí).…(6分)

③當(dāng)l1的斜率存在且不為0時(shí),設(shè)l1:x=my+1,m≠0,則

設(shè)A(x1,y1),B(x2,y2),由得,(2m2+3)y2+4my﹣1=0,

所以,

所以

得,,解得,

所以,

所以

, 因?yàn)?/span>

所以,

當(dāng)且僅當(dāng)時(shí)取等號(hào).所以

綜上,△ABM面積的最大值為,此時(shí)直線(xiàn)l1的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐中,,且,,,則該三棱錐的外接球的表面積為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】棋盤(pán)上標(biāo)有第0,12,,100站,棋子開(kāi)始時(shí)位于第0站,棋手拋擲均勻硬幣走跳棋游戲.若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到跳到第99站(勝利大本營(yíng))或第100站(失敗集中營(yíng))是,游戲結(jié)束.設(shè)棋子跳到第n站的概率為.

1)求的值;

2)證明:

3)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,ACAB邊上的中線(xiàn)長(zhǎng)之和等于9

1)求重心M的軌跡方程;

2)求頂點(diǎn)A的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在公差不為零的等差數(shù)列{an}中,a4=10,且a3a6、a10成等比數(shù)列.

1)求{an}的通項(xiàng)公式;

2)設(shè)bn=,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,F是橢圓的左焦點(diǎn),橢圓的離心率為,B為橢圓的左頂點(diǎn)和上頂點(diǎn),點(diǎn)Cx軸上,的外接圓M恰好與直線(xiàn)相切.

1求橢圓的方程;

2過(guò)點(diǎn)C的直線(xiàn)與已知橢圓交于PQ兩點(diǎn),且,求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

是否存在,使得,按照某種順序成等差數(shù)列?若存在,請(qǐng)確定的個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由;

求實(shí)數(shù)與正整數(shù),使得內(nèi)恰有個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,過(guò)點(diǎn)向圓引兩條切線(xiàn),,切點(diǎn)為,,若點(diǎn)的坐標(biāo)為,則直線(xiàn)的方程為____________;若為直線(xiàn)上一動(dòng)點(diǎn),則直線(xiàn)經(jīng)過(guò)定點(diǎn)__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知坐標(biāo)平面上動(dòng)點(diǎn)與兩個(gè)定點(diǎn) ,且.

(1)求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么圖形;

(2)記(1)中軌跡為,過(guò)點(diǎn)的直線(xiàn)所截得的線(xiàn)段長(zhǎng)度為8,求直線(xiàn)的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案