若函數(shù)f(x)=
1
3
x3+(a-1)x2+2x-4
的導(dǎo)函數(shù)f'(x)在區(qū)間(-∞,4]上是減函數(shù),則實數(shù)a的取值范圍是(  )
A、(-∞,-3)
B、(-∞,-3]
C、(-3,+∞)
D、[-3,+∞)
分析:先求出原函數(shù)的導(dǎo)數(shù),再根據(jù)導(dǎo)函數(shù)f'(x)在區(qū)間(-∞,4]上是減函數(shù),轉(zhuǎn)化為f'′(x)≤0在(-∞,4]上恒成立,列出關(guān)于a的不等關(guān)系解之即得.
解答:解:f'(x)=x2+2(a-1)x+2,
則f(x)=2x+2(a-1)≤0在(-∞,4]上恒成立,
∴8+2(a-1)≤0,∴a≤-3,
故選B.
點評:本小題主要考查函數(shù)單調(diào)性的應(yīng)用、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、不等式的解法等基礎(chǔ)知識,考查運算求解能力、化歸思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x+
13-2tx
(t∈N*)的最大值是正整數(shù)M,則M=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
1
x
,x>1
(3a-1)x+4a,x≤1
為R上的減函數(shù),則實數(shù)a的取值范圍為
[
2
7
1
3
)
[
2
7
,
1
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3+2x-x2
的定義域是A.
(1)求集合A;
(2)若集合B={x|a-1<x<a+1}且B⊆A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
x2-1
x2+1
,則(1)
f(2)
f(
1
2
)
=
-1
-1

(2)f(3)+f(4)+…+f(2012)+f(
1
3
)+f(
1
4
)+…+f(
1
2012
)
=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
(
1
3
)
x
-8(x≤0)
x
     (x>0)
,若f(a)>1,則實數(shù)a的取值范圍為
a>1或a<-2
a>1或a<-2

查看答案和解析>>

同步練習(xí)冊答案