【題目】已知向量為正實(shí)數(shù), .

(1)若,求的最大值;

(2)是否存在,使?若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.

【答案】(1);(2)不存在,使.

【解析】試題分析:(1),則·=0,即(-2t21)()(t23)()0k,從而得解;

(2)假設(shè)存在正實(shí)數(shù)k,t,使,則(-2t21)()(t23)()=0,整理得t3tk0從而得解.

試題解析:

(1,2)(t21)(2,1)(2t21,t23) (,- )

(1)若,則·=0,即(-2t21)()(t23)()0

整理得,k,當(dāng)且僅當(dāng),即t=1時(shí)取等號(hào),∴kmax.

(2)假設(shè)存在正實(shí)數(shù)k,t,使,則(-2t21)()(t23)()=0,化簡(jiǎn)得=0,即t3tk0.

因?yàn)?/span>kt是正實(shí)數(shù),故滿足上式的k,t不存在,所以不存在k,t,使.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)實(shí)部為正數(shù)的復(fù)數(shù)z滿足,且(1+2i)z在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第一、三象限的角平分線上.

1)求復(fù)數(shù)z;

2)若為純虛數(shù) , m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)站從春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機(jī)用戶中隨機(jī)抽取名進(jìn)行調(diào)查,將受訪用戶按年齡分成組: , ,…, ,并整理得到如下頻率分布直方圖:

(Ⅰ)求的值;

(Ⅱ)從春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機(jī)用戶中隨機(jī)抽取一人,估計(jì)其年齡低于歲的概率;

(Ⅲ)估計(jì)春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機(jī)用戶的平均年齡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某觀測(cè)站在目標(biāo)的南偏西方向,從出發(fā)有一條南偏東走向的公路,在處測(cè)得與相距的公路處有一個(gè)人正沿著此公路向走去,走到達(dá),此時(shí)測(cè)得距離為,若此人必須在分鐘內(nèi)從處到達(dá)處,則此人的最小速度為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的圖象在處的切線方程;

(2)若函數(shù)上有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍;

(3)是否存在實(shí)數(shù),使得對(duì)任意的,都有函數(shù)的圖象在的圖象的下方?若存在,請(qǐng)求出最大整數(shù)的值;若不存在,請(qǐng)說理由.

(參考數(shù)據(jù): , ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P—ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,EPC的中點(diǎn).

)證明PA//平面BDE

)求二面角B—DE—C的平面角的余弦值;

)在棱PB上是否存在點(diǎn)F,使PB⊥平面DEF?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解本校學(xué)生網(wǎng)課期間課后玩電腦游戲時(shí)長情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生每天玩電腦游戲的時(shí)長的頻率分布直方圖.

1)根據(jù)頻率分布直方圖估計(jì)抽取樣本的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

2)已知樣本中玩電腦游戲時(shí)長在的學(xué)生中,男生比女生多1人,現(xiàn)從中任選3人進(jìn)行回訪,求選出的3人中恰有兩人是男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某一部件由四個(gè)電子元件按如圖方式連接而成,元件1或元件2正常工作,且元件3或元件4正常工作,則部件正常工作.設(shè)四個(gè)電子元件的使用壽命(單位:小時(shí))均服從正態(tài)分布,且各個(gè)元件能否正常工作相互獨(dú)立,那么該部件的使用壽命超過1000小時(shí)的概率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】機(jī)床廠今年年初用98萬元購進(jìn)一臺(tái)數(shù)控機(jī)床,并立即投入生產(chǎn)使用,計(jì)劃第一年維修、保養(yǎng)費(fèi)用12萬元,從第二年開始,每年所需維修、保養(yǎng)費(fèi)用比上一年增加4萬元,該機(jī)床使用后,每年的總收入為50萬元,設(shè)使用x年后數(shù)控機(jī)床的盈利額為y萬元.

()寫出y與x之間的函數(shù)關(guān)系式;

()從第幾年開始,該機(jī)床開始盈利(盈利額為正值);

()使用若干年后,對(duì)機(jī)床的處理方案有兩種:

(1)當(dāng)年平均盈利額達(dá)到最大值時(shí),以30萬元價(jià)格處理該機(jī)床;

(2)當(dāng)盈利額達(dá)到最大值時(shí),以12萬元價(jià)格處理該機(jī)床.

請(qǐng)你研究一下哪種方案處理較為合理?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案