(本題滿分13分)
已知橢圓C的兩焦點分別為,長軸長為6,
⑴求橢圓C的標準方程;
⑵已知過點(0,2)且斜率為1的直線交橢圓C于A 、B兩點,求線段AB的長度。

;⑵。

解析試題分析:⑴由,長軸長為6 
得:所以 
∴橢圓方程為  …………………………6分
⑵設,由⑴可知橢圓方程為①,
∵直線AB的方程為②      ……………………………8分
把②代入①得化簡并整理得
    …………………11分
  ………………………13分
考點:本題考查橢圓標準方程;弦長公式;直線與橢圓的綜合問題。
點評:本題考查橢圓方程的求法和弦長的運算,解題時要注意橢圓性質(zhì)的靈活運用和弦長公式的合理運用。在求直線與圓錐曲線相交的弦長時一般采用韋達定理設而不求的方法,在求解過程中一般采取步驟為:設點→聯(lián)立方程→消元→韋達定理→弦長公式。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分13分) 如圖,是離心率為的橢圓,
()的左、右焦點,直線將線段分成兩段,其長度之比為1 : 3.設上的兩個動點,線段的中點在直線上,線段的中垂線與交于兩點.

(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點,使以為直徑的圓經(jīng)過點,若存在,求出點坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

分別是橢圓+=1()的左、右焦點,是橢圓的上頂點,是直線與橢圓的另一個交點,=60°.
(1)求橢圓的離心率;
(2)已知△的面積為40,求a, b 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知拋物線過點.(1)求拋物線的方程,并求其準線方程;
(2)是否存在平行于為坐標原點)的直線,使得直線與拋物線有公共點,且直線
距離等于?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

點P是圓上的一個動點,過點P作PD垂直于軸,垂足為D,Q為線段PD的中點。
(1)求點Q的軌跡方程。
(2)已知點M(1,1)為上述所求方程的圖形內(nèi)一點,過點M作弦AB,若點M恰為弦AB的中點,求直線AB的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某拋物線形拱橋跨度是20米,拱高4米,在建橋時每隔4米需用一支柱支撐,求其中最長的支柱的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知橢圓,過點(m,0)作圓的切線交橢圓G于A,B兩點.
(1)求橢圓G的焦點坐標和離心率;
(2)將表示為m的函數(shù),并求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)(理科)已知橢圓,過焦點且垂直于長軸的弦長為1,且焦點與短軸兩端點構成等邊三角形.
(1)求橢圓的方程;
(2)過點的直線交橢圓于兩點,交直線于點,且,,
求證:為定值,并計算出該定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓上的動點到焦點距離的最小值為,以原點為圓心、橢圓的短半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(2,0)的直線與橢圓相交于兩點,為橢圓上一點, 且滿足
為坐標原點),當 時,求實數(shù)的值.

查看答案和解析>>

同步練習冊答案