在極坐標系中,點M(4,
π
3
)到曲線ρ=4cos(θ+
π
3
)上的點的距離的最小值為
 
考點:簡單曲線的極坐標方程
專題:選作題,坐標系和參數(shù)方程
分析:先利用三角函數(shù)的和角公式展開曲線的極坐標方程的左式,再利用直角坐標與極坐標間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進行代換即得其直角坐標方程式,再在直角坐標系中算出點M的坐標,再利用直角坐標中的關(guān)系求出距離的最小值即可.
解答: 解:點M(4,
π
3
)的直角坐標為(2,2
3
),
曲線ρ=4cos(θ+
π
3
)上的直角坐標方程為:(x-1)2+(y+
3
2=4,圓心為C(1,-
3
),半徑為2,
∴|CM|=
(2-1)2+(2
3
+
3
)2
=2
7

∴點M(4,
π
3
)到曲線ρ=4cos(θ+
π
3
)上的點的距離的最小值為2
7
-2.
故答案為:2
7
-2.
點評:本題考查點的極坐標和直角坐標的互化,能在極坐標系中用極坐標刻畫點的位置,體會在極坐標系和平面直角坐標系中刻畫點的位置的區(qū)別,能進行極坐標和直角坐標的互化.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx+a,g(x)=x-a.
(Ⅰ)當直線y=g(x)恰好為曲線y=f(x)的切線時,求a的值;
(Ⅱ)當a>0時,若函數(shù)F(x)=f(x)•g(x)在區(qū)間[e-
3
2
,1]上不單調(diào),求a的取值范圍;
(Ⅲ)若a∈Z且xf(x)+g(x)>0對一切x>1恒成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an}中a1=2,公比q=-2,記πn=a1×a2×…×an(即πn表示數(shù)列{an}的前n項之積),則π8,π9,π10,π11中值最大的是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱錐D-ABC中,AB=BC=1,AD=2,BD=
5
,AC=
2
,BC⊥AD,則三棱錐的外接球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將參加夏令營的500名學生編號為:001,002,…,500,采用系統(tǒng)抽樣的方法抽取一個容量為50的樣本,且隨機抽得的號碼為003,這500名學生分住在三個營區(qū),從001到200在第一營區(qū),從201到355在第二營區(qū),從356到500在第三營區(qū),則第三個營區(qū)被抽中的人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某幾何體的三視圖如圖所示,則該幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一平面截一球得到直徑為2
5
cm的圓面,球心到這個平面的距離是2cm,則該球的體積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a1=1,an=n(an+1-an)(n∈N*),則數(shù)列{an}的通項公式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,b>0,且h=min(a,
b
a2+b2
),求h的范圍
 

查看答案和解析>>

同步練習冊答案