設(shè)F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1的左、右兩個焦點,若橢圓上滿足PF1⊥PF2的點P有且只有兩個,則離心率e的值為( 。
A、
1
3
B、
1
2
C、
2
2
D、
3
2
考點:橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用P為橢圓C短軸的一個端點,且PF1⊥PF2,可得b=c,由此可求橢圓的離心率.
解答: 解:由題意,P是短軸的端點,則b=c,
∴a=
2
c,
∴e=
c
a
=
2
2

故選:C.
點評:本題考查橢圓的離心率,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于數(shù)集A,B,定義A+B={x|x=a+b,a∈A,b∈B},A÷B={x|x=
a
b
,a∈A,b∈B}若集合A={1,2},則集合(A+A)÷A中所有元素之和為( 。
A、
10
2
B、
15
2
C、
21
2
D、
23
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

各項均為正數(shù)的等比數(shù)列中:a5a6+a4a7=18,則log3a1+log3a2+…+log3a10=( 。
A、12
B、10
C、1+log35
D、2+log35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個物體的運(yùn)動方程為s=2t2+t+1,其中s的單位是米,t的是秒,那么物體在2秒末的瞬時速度是(  )
A、10米/秒B、7米/秒
C、9米/秒D、8米/秒

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),又f(x+
π
2
)=f(x-
π
2
),且當(dāng)x∈[0,
π
2
]時,f(x)=sinx,則f(
3
)的值為( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,tanAsin2B=tanBsin2A,那么△ABC一定是( 。
A、銳角三角形
B、直角三角形
C、等腰三角形
D、等腰或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A對應(yīng)的變換是先將某平面圖形上的點的縱坐標(biāo)保持不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,再將所得圖形繞原點按順時針方向旋轉(zhuǎn)90°.
(1)求矩陣A及A的逆矩陣B;
(2)已知矩陣M=
33
24
,求M的特征值和特征向量;
(3)若α=
1
8
在矩陣B的作用下變換為β,求M50β(運(yùn)算結(jié)果用指數(shù)式表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖為某幾何體三視圖,已知三角形的三邊長與圓的直徑均為2,求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xln(1+x)-a(x+1)(x>0),其中a為實常數(shù).
(1)若函數(shù)g(x)=f(x)-
2x
1+x
≥0
定義域內(nèi)恒成立,求a的取值范圍;
(2)證明:當(dāng)a=0時,
f(x)
x2
≤1
;
(3)求證:
1
2
+
1
3
+…+
1
n+1
<ln(1+n)<1+
1
2
+
1
3
+…+
1
n

查看答案和解析>>

同步練習(xí)冊答案