給定正數(shù)p,q,a,b,c,其中p≠q,若p,a,q是等比數(shù)列,p,b,c,q是等差數(shù)列,則一元二次方程bx2-2ax+c=0( 。
分析:先由p,a,q是等比數(shù)列,p,b,c,q是等差數(shù)列,確定a、b、c與p、q的關系,再判斷一元二次方程bx2-2ax+c=0判別式△=4a2-4bc的符號,決定根的情況即可得答案.
解答:解:∵p,a,q是等比數(shù)列,p,b,c,q是等差數(shù)列
∴a2=pq,b+c=p+q.解得b=
2p+q
3
,c=
p+2q
3

∴△=(-2a)2-4bc=4a2-4bc=4pq-
4
9
(2p+q)(p+2q)
=-
8
9
p2-
8
9
q2+
16
9
pq
=-
8
9
(p2-2pq+q2)
=-
8
9
(p-q)2
又∵p≠q,∴-
2
9
(p-q)2<0,即△<0,原方程無實根.
故選A.
點評:本題考查了等比數(shù)列、等差數(shù)列的定義和性質,重點考查了一元二次方程根的存在性判斷,解題時要有一定的代數(shù)變形能力,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給定正數(shù)p,q,a,b,c,其中p≠q,若p,a,q成等比數(shù)列,p,b,c,q成等差數(shù)列,則一元二次程bx2-2ax+c=0
實數(shù)根(填“有”或“無”之一)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

給定正數(shù)p,q,a,b,c,其中p≠q,若p,a,q是等比數(shù)列,p,b,c,q是等差數(shù)列,則一元二次方程bx2-2ax+c=0


  1. A.
    無實根
  2. B.
    有兩個相等實根
  3. C.
    有兩個同號相異實根
  4. D.
    有兩個異號實根

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

給定正數(shù)p,q,a,b,c,其中p≠q,若p,a,q是等比數(shù)列,p,b,c,q是等差數(shù)列,則一元二次方程bx2-2ax+c=0( 。
A.無實根B.有兩個相等實根
C.有兩個同號相異實根D.有兩個異號實根

查看答案和解析>>

科目:高中數(shù)學 來源:2013年全國高校自主招生數(shù)學模擬試卷(九)(解析版) 題型:選擇題

給定正數(shù)p,q,a,b,c,其中p≠q,若p,a,q是等比數(shù)列,p,b,c,q是等差數(shù)列,則一元二次方程bx2-2ax+c=0( )
A.無實根
B.有兩個相等實根
C.有兩個同號相異實根
D.有兩個異號實根

查看答案和解析>>

同步練習冊答案