【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.在購進機器時,可以一次性額外購買幾次維修服務(wù),每次維修服務(wù)費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機器使用期間,如果維修次數(shù)超過購機時購買的維修服務(wù)次數(shù),則每維修一次需支付維修服務(wù)費用500元,無需支付小費.現(xiàn)需決策在購買機器時應同時一次性購買幾次維修服務(wù),為此搜集并整理了100臺這種機器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計表:
維修次數(shù) | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
記x表示1臺機器在三年使用期內(nèi)的維修次數(shù),y表示1臺機器在維修上所需的費用(單位:元),表示購機的同時購買的維修服務(wù)次數(shù).
(1)若=10,求y與x的函數(shù)解析式;
(2)若要求“維修次數(shù)不大于”的頻率不小于0.8,求n的最小值;
(3)假設(shè)這100臺機器在購機的同時每臺都購買10次維修服務(wù),或每臺都購買11次維修服務(wù),分別計算這100臺機器在維修上所需費用的平均數(shù),以此作為決策依據(jù),購買1臺機器的同時應購買10次還是11次維修服務(wù)?
【答案】(1) ;(2)見解析;(3)10次.
【解析】分析:(1)根據(jù)題意寫出分段函數(shù)即可;(2)計算出“維修次數(shù)不大于10或11次”的頻率,再比較得到答案;(3)利用表格得到費用的所有可能取值及相應頻率,再利用平均數(shù)公式進行求解,再比較兩個平均數(shù)即可.
詳解:(1)
即 .
(2)因為 “維修次數(shù)不大于”的頻率,
“維修次數(shù)不大于”的頻率=,
所以若要求“維修次數(shù)不大于”的頻率不小于0.8,則n的最小值為11.
(3)若每臺都購買10次維修服務(wù),則有下表:
維修次數(shù)x | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
費用y | 2400 | 2450 | 2500 | 3000 | 3500 |
此時這100臺機器在維修上所需費用的平均數(shù)為
2730(元)
若每臺都購買11次維修服務(wù),則有下表:
維修次數(shù)x | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
費用y | 2600 | 2650 | 2700 | 2750 | 3250 |
此時這100臺機器在維修上所需費用的平均數(shù)為
2750(元)
因為,所以購買1臺機器的同時應購買10次維修服務(wù).
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)()在處的切線與直線平行.
(1)求的值并討論函數(shù)在上的單調(diào)性;
(2)若函數(shù)(為常數(shù))有兩個零點()
①求實數(shù)的取值范圍;
②求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某輛汽車以千米/小時的速度在高速公路上勻速行駛(考慮到高速公路行車安全要求)時,每小時的油耗(所需要的汽油量)為升,其中為常數(shù),且.
(1)若汽車以千米/小時的速度行駛時,每小時的油耗為升,欲使每小時的油耗不超過升,求的取值范圍;
(2)求該汽車行駛千米的油耗的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《周髀算經(jīng)》 是我國古代的天文學和數(shù)學著作。其中一個問題的大意為:一年有二十四個節(jié)氣(如圖),每個節(jié)氣晷長損益相同(即物體在太陽的照射下影子長度的增加量和減少量相同).若冬至晷長一丈三尺五寸,夏至晷長一尺五寸(注:ー丈等于十尺,一尺等于十寸),則立冬節(jié)氣的晷長為( )
A. 九尺五寸 B. 一丈五寸 C. 一丈一尺五寸 D. 一丈六尺五寸
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1).若函數(shù)處有極值10,求的解析式;
(2).當時,若函數(shù)在上是單調(diào)增函數(shù),求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,且,,三點中恰有兩點在拋物線上,另一點是拋物線的焦點.
(1)求證:、、三點共線;
(2)若直線過拋物線的焦點且與拋物線交于、兩點,點到軸的距離為,點到軸的距離為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ,其中為常數(shù).
(1)當,且時,求函數(shù)的單調(diào)區(qū)間及極值;
(2)已知, ,若函數(shù)有2個零點, 有6個零點,試確定的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校在高二數(shù)學競賽初賽考試后,對90分以上(含90分)的成績進行統(tǒng)計,其頻率分布直方圖如圖所示,若分數(shù)段的學生人數(shù)為2.
(1)求該校成績在分數(shù)段的學生人數(shù);
(2)估計90分以上(含90分)的學生成績的眾數(shù)、中位數(shù)和平均數(shù)(結(jié)果保留整數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com