精英家教網 > 高中數學 > 題目詳情

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,曲線的參數方程為為參數),以坐標原點為極點,以軸非負半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)求曲線的極坐標方程及直線的直角坐標方程;

(2)設直線與曲線交于兩點,求.

【答案】(Ⅰ)(Ⅱ)

【解析】試題分析:

(1)對于圓的方程,消去參數即可得到直角坐標方程,然后寫出極坐標方程即可,對于直線的極坐標方程,將其轉化為直角坐標方程即可;

(2)求解弦長的問題首先考查圓心到直線的距離,然后結合平面幾何相關結合求解弦長即可.

試題解析:

(Ⅰ)圓 (為參數)得曲線的直角坐標方程:

所以它的極坐標方程為;

直線的直角坐標方程為

(Ⅱ)直線的直角坐標方程: ;

圓心到直線的距離,圓的半徑

弦長

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知過原點的動直線與圓相交于不同的兩點

1求線段的中點的軌跡的方程;

2是否存在實數,使得直線與曲線只有一個交點?若存在,求出的取值范圍;若不存在,請說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=2cos2x+ sin2x﹣1.
(1)求f(x)的最大值及此時的x值
(2)求f(x)的單調減區(qū)間
(3)若x∈[﹣ , ]時,求f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓和圓

(1)判斷圓和圓的位置關系;

(2)過圓的圓心作圓的切線,求切線的方程;

(3)過圓的圓心作動直線交圓于A,B兩點.試問:在以AB為直徑的所有圓中,是否存在這樣的圓,使得圓經過點?若存在,求出圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一企業(yè)從某生產線上隨機抽取件產品,測量這些產品的某項技術指標值,得到的頻率分布直方圖如圖.

(1)估計該技術指標值平均數;

(2)在直方圖的技術指標值分組中,以落入各區(qū)間的頻率作為取該區(qū)間值的頻率,若,則產品不合格,現該企業(yè)每天從該生產線上隨機抽取件產品檢測,記不合格產品的個數為,求的數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】春節(jié)來臨,有農民工兄弟、、四人各自通過互聯網訂購回家過年的火車票,若訂票成功即可獲得火車票,即他們獲得火車票與否互不影響.若、、獲得火車票的概率分別是,其中,又成等比數列,且、兩人恰好有一人獲得火車票的概率是.

(1)求的值;

(2)若、是一家人且兩人都獲得火車票才一起回家,否則兩人都不回家.設表示、、能夠回家過年的人數,求的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△AOB中,∠AOB=60°,OA=2,OB=5,在線段OB上任取一點C,△AOC為鈍角三角形的概率是(
A.0.2
B.0.4
C.0.6
D.0.8

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,上、下頂點分別是,點的中點,若,且.

(1)求橢圓的標準方程;

(2)過的直線與橢圓交于不同的兩點,求的面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知=).

()當=2時,求函數在(1,)處的切線方程;

()若≥1時,≥0,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案