定義在R上的偶函數(shù)f(x)滿足f(x)=f(x+2),當(dāng)x∈[3,4]時,f(x)=x-2,則有下面三個式子:①f(sin
1
2
)<f(cos
1
2
);②f(sin
π
3
)<f(cos
π
3
);③f(sin1)<f(cos1);其中一定成立的是_____
考點:函數(shù)的周期性,函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由f(x)=f(x+2)知T=2為f(x)的一個周期,設(shè)x∈[-1,0]知x+4∈[3,4],f(x)=f(x+4)=x+4-2=x+2.
畫函數(shù)的圖象,知函數(shù)在(0,1)上遞減,比較自變量的大小可得答案.
解答: 解:由f(x)=f(x+2)知T=2為f(x)的一個周期,設(shè)x∈[-1,0]知x+4∈[3,4],f(x)=f(x+4)=x+4-2=x+2.
圖象如圖:

對于①:sin
1
2
<cos
1
2
⇒f(sin
1
2
)>f(cos
1
2
).
對于②:sin
π
3
>cos
π
3
⇒f(sin
π
3
)<f(cos
π
3
).
對于③:sin1>cos1⇒f(sin1)<f(cos1).
故答案為:②③.
點評:本題主要考查函數(shù)的周期性與函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)p:實數(shù)x滿足(x-3a)(x-a)<0,其中a>0,q:實數(shù)x滿足
x2-3x≤0
x2-x-2>0

(1)當(dāng)a=1,p且q為真時,求實數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,∠A=90°,D,E兩點三等分斜邊,若|AD|=sinx.|AE|=cosx.求|BC|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

近期由于某些原因,國內(nèi)進口豪華轎車紛紛降價,某豪車原價為200萬元,連續(xù)兩次降價a%后,售價為148萬元,則下面所列方程正確的是(  )
A、200(1+a%)2=148
B、200(1-a%)2=148
C、200(1-2a%)=148
D、200(1-a%)=148

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(-x+
π
4
)
的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四個數(shù):①y=x.sinx②y=x.cosx③y=x.|cosx|④y=x•2x的圖象如下,但順序被打亂.則按照圖象從左到右的順序,對應(yīng)的函數(shù)序號正確一組的是( 。
A、①④②③B、①④③②
C、④①②③③④②①

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式:
(1)
2-x
x+1
≤1
|2x-1|≤1

(2)x2-(a+1)x+a<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是偶函數(shù),且當(dāng)x>0時,f(x)=
2
x+1
,則在區(qū)間[-4,-2]內(nèi),函數(shù)f(x)( 。
A、單調(diào)遞增,最大值
2
5
B、單調(diào)遞減,最大值
2
3
C、單調(diào)遞增,最小值
2
3
D、單調(diào)遞增,最大值
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,若
a4
a7
=13,則
S7
S13
=( 。
A、7
B、13
C、
7
13
D、
4
7

查看答案和解析>>

同步練習(xí)冊答案