【題目】設(shè)函數(shù),(為常數(shù)),.曲線在點(diǎn)處的切線與軸平行
(1)求的值;
(2)求的單調(diào)區(qū)間和最小值;
(3)若對任意恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)k=1;(2)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,最小值為;(3) .
【解析】
(1)首先求得導(dǎo)函數(shù),然后利用導(dǎo)函數(shù)研究函數(shù)切線的性質(zhì)得到關(guān)于k的方程,解方程即可求得k的值;
(2)首先確定函數(shù)的定義域,然后結(jié)合導(dǎo)函數(shù)的符號與原函數(shù)的單調(diào)性求解函數(shù)的單調(diào)區(qū)間和函數(shù)的最值即可;
(3)用問題等價于,據(jù)此求解實(shí)數(shù)a的取值范圍即可.
(1),,因?yàn)榍在點(diǎn)處的切線與軸平行,所以,所以.
(2),定義域?yàn)?/span>,
令,得,當(dāng)變化時,和的變化如下表:
由上表可知,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,最小值為.
(3)若對任意成立,則,
即,解得:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(a為正常數(shù)),且函數(shù)和的圖象與y軸的交點(diǎn)重合.
(1)求a實(shí)數(shù)的值
(2)若(b為常數(shù))試討論函數(shù)的奇偶性;
(3)若關(guān)于x的不等式有解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求曲線和直線在該直角坐標(biāo)系下的普通方程;
(2)動點(diǎn)在曲線上,動點(diǎn)在直線上,定點(diǎn)的坐標(biāo)為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了增強(qiáng)消防安全意識,某中學(xué)對全體學(xué)生做了一次消防知識講座,從男生中隨機(jī)抽取人,從女生中隨機(jī)抽取人參加消防知識測試,統(tǒng)計數(shù)據(jù)得到如下列聯(lián)表:
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
男生 | |||
女生 | |||
總計 |
(1)試判斷能否有的把握認(rèn)為消防知識的測試成績優(yōu)秀與否與性別有關(guān);
附:
(2)為了宣傳消防知識,從該校測試成績獲得優(yōu)秀的同學(xué)中采用分層抽樣的方法,隨機(jī)選出人組成宣傳小組.現(xiàn)從這人中隨機(jī)抽取人到校外宣傳,求到校外宣傳的同學(xué)中男生人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年,我國施行個人所得稅專項附加扣除辦法,涉及子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息或者住房租金、贍養(yǎng)老人等六項專項附加扣除.某單位老、中、青員工分別有人,現(xiàn)采用分層抽樣的方法,從該單位上述員工中抽取人調(diào)查專項附加扣除的享受情況.
(Ⅰ)應(yīng)從老、中、青員工中分別抽取多少人?
(Ⅱ)抽取的25人中,享受至少兩項專項附加扣除的員工有6人,分別記為.享受情況如右表,其中“”表示享受,“×”表示不享受.現(xiàn)從這6人中隨機(jī)抽取2人接受采訪.
員工 項目 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
繼續(xù)教育 | × | × | ○ | × | ○ | ○ |
大病醫(yī)療 | × | × | × | ○ | × | × |
住房貸款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
贍養(yǎng)老人 | ○ | ○ | × | × | × | ○ |
(i)試用所給字母列舉出所有可能的抽取結(jié)果;
(ii)設(shè)為事件“抽取的2人享受的專項附加扣除至少有一項相同”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)在區(qū)間上的最大值和最小值分別為()
A. 25,-2B. 50,-2C. 50,14D. 50,-14
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形為正方形, 平面, , 是上一點(diǎn),且.
(1)求證: 平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】口袋里共有4個球,其中有2個是白球,2個是黑球,這4個球除顏色外完全相同。4個人按順序依次從中摸出一個球(不放回),試計算第二個人摸到白球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某股票在30天內(nèi)每股的交易價格(元)與時間(天)組成有序數(shù)對,點(diǎn)落在如圖所示的兩條線段上,該股票在30天內(nèi)的日交易量(萬股)與時間(天)的部分?jǐn)?shù)據(jù)如表所示:
(1)根據(jù)提供的圖象,寫出該股票每股的交易價格與時間所滿足的函數(shù)關(guān)系式;
(2)根據(jù)表中數(shù)據(jù)確定日交易量與時間的一次函數(shù)關(guān)系式;
(3)在(1)(2)的結(jié)論下,若該股票的日交易額為(萬元),寫出關(guān)于的函數(shù)關(guān)系式,并求在這30天中第幾天的交易額最大,最大是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com