設(shè)是橢圓上的兩點(diǎn),已知向量,若且橢圓的離心率,短軸長(zhǎng)為2,O為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)試問(wèn)△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.

(1);(2)△AOB的面積為定值1.

解析試題分析:(1)由題可得,則橢圓方程為      3分
(2)當(dāng)軸時(shí):,則
由對(duì)稱性只取.
AOB的面積為        6分
當(dāng)ABx軸不垂直時(shí),設(shè)ABy =kx + m.


        8分
O到直線AB的距離:,SAOB    10分

   13分
SAOB
AOB的面積為定值1.                  14分
考點(diǎn):本題考查了橢圓的方程及直線與橢圓的位置關(guān)系
點(diǎn)評(píng):橢圓的概念和性質(zhì),仍將是今后命題的熱點(diǎn),定值、最值、范圍問(wèn)題將有所加強(qiáng);利用直線、弦長(zhǎng)、圓錐曲線三者的關(guān)系組成的各類試題是解析幾何中長(zhǎng)盛不衰的主題,其中求解與相交弦有關(guān)的綜合題仍是今后命題的重點(diǎn);與其它知識(shí)的交匯(如向量、不等式)命題將是今后命題的一個(gè)新的重點(diǎn)、熱點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線:上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)直線與拋物線交于不同兩點(diǎn),若滿足,證明直線恒過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).
(Ⅲ)試把問(wèn)題(Ⅱ)的結(jié)論推廣到任意拋物線:中,請(qǐng)寫出結(jié)論,不用證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,直線,為平面上的動(dòng)點(diǎn),過(guò)點(diǎn)的垂線,垂足為點(diǎn),且
(1)求動(dòng)點(diǎn)的軌跡曲線的方程;
(2)設(shè)動(dòng)直線與曲線相切于點(diǎn),且與直線相交于點(diǎn),試探究:在坐標(biāo)平面內(nèi)是否存在一個(gè)定點(diǎn),使得以為直徑的圓恒過(guò)此定點(diǎn)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)是橢圓的左焦點(diǎn),直線方程為,直線軸交于點(diǎn),、分別為橢圓的左右頂點(diǎn),已知,且
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)且斜率為的直線交橢圓于、兩點(diǎn),求三角形面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M,N  (點(diǎn)M在點(diǎn)N的右側(cè)),且。橢圓D:的焦距等于,且過(guò)點(diǎn)

( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過(guò)點(diǎn)M的動(dòng)直線與橢圓D交于A、B兩點(diǎn),若點(diǎn)N在以弦AB為直徑的圓的外部,求直線斜率的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

雙曲線的離心率等于2,且與橢圓有相同的焦點(diǎn),求此雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知橢圓的左焦點(diǎn)為F,過(guò)點(diǎn)F的直線交橢圓于A、B兩點(diǎn),線段AB的中點(diǎn)為G,AB的中垂線與x軸和y軸分別交于D、E兩點(diǎn).

(Ⅰ)若點(diǎn)G的橫坐標(biāo)為,求直線AB的斜率;
(Ⅱ)記△GFD的面積為S1,△OED(O為原點(diǎn))的面積為S2
試問(wèn):是否存在直線AB,使得S1=S2?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率等于,點(diǎn)在橢圓上.
(I)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左右頂點(diǎn)分別為,,過(guò)點(diǎn)的動(dòng)直線與橢圓相交于,兩點(diǎn),是否存在定直線,使得的交點(diǎn)總在直線上?若存在,求出一個(gè)滿足條件的值;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若雙曲線的離心率等于,直線與雙曲線的右支交于兩點(diǎn).
(1)求的取值范圍;
(2)若,點(diǎn)是雙曲線上一點(diǎn),且,求

查看答案和解析>>

同步練習(xí)冊(cè)答案