(本題滿分18分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
已知函數(shù))在區(qū)間上有最大值和最小值.設(shè)
(1)求、的值;
(2)若不等式上有解,求實(shí)數(shù)的取值范圍;
(3)若有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
(1),……(1分)
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195638665399.png" style="vertical-align:middle;" />,所以在區(qū)間上是增函數(shù),故,解得.(3分)
(2)由已知可得,……(1分)
所以可化為,…………(1分)
化為,令,則,因,故,
,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195638946619.png" style="vertical-align:middle;" />,故,…………(3分)
所以的取值范圍是.…………(1分)
(3)原方程可化為,……(1分)
,則有兩個(gè)不同的實(shí)數(shù)解,,其中,,或,.……(3分)
,則 ①
 ②   …………(2分)
解不等組①,得,而不等式組②無實(shí)數(shù)解.所以實(shí)數(shù)的取值范圍是
………………(2分)
 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
1.討論函數(shù)的單調(diào)性
2.  設(shè),當(dāng)k=1時(shí),若對(duì)于任意,存在
使得,求實(shí)數(shù)b的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.對(duì)于上的任意函數(shù),若滿足,則必有( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知時(shí)有極值0.
(1)求常數(shù)a、b的值;
(2)求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線在點(diǎn)處的切線方程是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知曲線,則曲線在點(diǎn)處的切線方程為(  。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(8分) 若f(x)=ax3+bx2,且f(x)在點(diǎn)P(-1,-2)處的切線恰好與直線3x-y=0垂直。(1)求a,b的值;(2)若f(x)在區(qū)間[0,m]上單調(diào),求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過坐標(biāo)原點(diǎn)作曲線的切線,則切線方程為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)在曲線上,為曲線在點(diǎn)處的切線的傾斜角,則的取值范圍是___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案