設(shè)m是實數(shù),記M={m|m>1},f(x)=log3(x2-4mx+4m2+m+)
(1)證明: 當m∈M時,f(x)對所有實數(shù)都有意義;反之,若f(x)對所有實數(shù)x都有意義,則m∈M。
(2)當m∈M時,求函數(shù)f(x)的最小值。
(3)求證: 對每個m∈M,函數(shù)f(x)的最小值都不小于1。
(1) 證明略(2) 當x=m時, f(2m)=log3(m+)為最小值。
(3)證明略
先將f(x)變形: f(x)=log3[(x-2m)2+m+],
當m∈M時,m>1,∴(x-m)2+m+>0恒成立,
故f(x)的定義域為R。
反之,若f(x)對所有實數(shù)x都有意義,則只須x2-4mx+4m2+m+>0,令Δ<0,即16m2-4(4m2+m+)<0,解得m>1,故m∈M。
(2)解析: 設(shè)u=x2-4mx+4m2+m+,
∵y=log3u是增函數(shù),∴當u最小時,f(x)最小。
而u=(x-2m)2+m+,
顯然,當x=m時,u取最小值為m+,
此時f(2m)=log3(m+)為最小值。
(3)證明: 當m∈M時,m+=(m-1)+ +1≥3,
當且僅當m=2時等號成立。
∴l(xiāng)og3(m+)≥log33=1。
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1 | 1 | -0.8 |
0.1 | -0.3 | -1 |
1 | 1 | c |
a | b | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年四川省達州市萬源三中高考數(shù)學模擬試卷4(理科)(解析版) 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源:2009年四川省高考數(shù)學試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com