已知點(diǎn)A(-1,0)、B(1,0),P(x,y)是直線y=x+2上任意一點(diǎn),以A、B為焦點(diǎn)的橢圓過點(diǎn)P.記橢圓離心率e關(guān)于x的函數(shù)為e(x),那么下列結(jié)論正確的是( )
A.e與x一一對應(yīng)
B.函數(shù)e(x)無最小值,有最大值
C.函數(shù)e(x)是增函數(shù)
D.函數(shù)e(x)有最小值,無最大值
【答案】分析:由題意可得c=1,橢圓離心率e=,由橢圓的定義可得PA+PB=2a,a=,再由PA+PB 有最小值而沒有最大值,從而得出結(jié)論.
解答:解:由題意可得c=1,橢圓離心率e==.故當(dāng)a取最大值時(shí)e取最小,a取最小值時(shí)e取最大.
由橢圓的定義可得PA+PB=2a,a=
由于PA+PB 有最小值而沒有最大值,即a有最小值而沒有最大值,
故橢圓離心率e 有最大值而沒有最小值,故B正確,且 D不正確.
當(dāng)直線y=x+2和橢圓相交時(shí),這兩個(gè)交點(diǎn)到A、B兩點(diǎn)的距離之和相等,
都等于2a,故這兩個(gè)交點(diǎn)對應(yīng)的離心率e相同,故A不正確.
由于當(dāng)x的取值趨于負(fù)無窮大時(shí),PA+PB=2a趨于正無窮大;
而當(dāng)當(dāng)x的取值趨于正無窮大時(shí),PA+PB=2a也趨于正無窮大,故函數(shù)e(x)不是增函數(shù),故C不正確.
故選B.
點(diǎn)評:本題主要考查橢圓的定義、以及簡單性質(zhì)的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)A(-1,0)與點(diǎn)B(1,0),C是圓x2+y2=1上的動點(diǎn),連接BC并延長至D,使得|CD|=|BC|,求AC與OD的交點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(-1,0),B(0,2),點(diǎn)P是圓(x-1)2+y2=1上任意一點(diǎn),則△PAB面積的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,0),B(0,1)和互不相同的點(diǎn)P1,P2,P3,…,Pn,…,滿足
OPn
=an
OA
+bn
OB
(n∈N*)
,O為坐標(biāo)原點(diǎn),其中an、bn分別為等差數(shù)列和等比數(shù)列,若P1是線段AB的中點(diǎn),設(shè)等差數(shù)列公差為d,等比數(shù)列公比為q,當(dāng)d與q滿足條件
 
時(shí),點(diǎn)P1,P2,P3,…,Pn,…共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(-1,0),B(1,0),M是平面上的一動點(diǎn),過M作直線l:x=4的垂線,垂足為N,且|MN|=2|MB|.
(1)求M點(diǎn)的軌跡C的方程;
(2)當(dāng)M點(diǎn)在C上移動時(shí),|MN|能否成為|MA|與|MB|的等比中項(xiàng)?若能求出M點(diǎn)的坐標(biāo),若不能說明理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)A到圖形C上每一個(gè)點(diǎn)的距離的最小值稱為點(diǎn)A到圖形C的距離.已知點(diǎn)A(1,0),圓C:x2+2x+y2=0,那么平面內(nèi)到圓C的距離與到點(diǎn)A的距離之差為1的點(diǎn)的軌跡是(  )

查看答案和解析>>

同步練習(xí)冊答案