如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形, AF∥DE,AF⊥FE,AF=AD=2 DE=2.
(Ⅰ) 求異面直線EF與BC所成角的大;
(Ⅱ) 若二面角A-BF-D的平面角的余弦值為,求AB的長.
(Ⅰ) 30°(Ⅱ)
【解析】
試題分析: (Ⅰ) 延長AD,F(xiàn)E交于Q.
因為ABCD是矩形,所以
BC∥AD,
所以∠AQF是異面直線EF與BC所成的角.
在梯形ADEF中,因為DE∥AF,AF⊥FE,AF=2,DE=1得
∠AQF=30°.即異面直線EF與BC所成角的大小為30°. 7分
(Ⅱ) 方法一:
設AB=x.取AF的中點G.由題意得DG⊥AF.
因為平面ABCD⊥平面ADEF,AB⊥AD,所以AB⊥平面ADEF,
所以AB⊥DG.所以DG⊥平面ABF.
過G作GH⊥BF,垂足為H,連結DH,則DH⊥BF,
所以∠DHG為二面角A-BF-D的平面角.
在直角△AGD中,AD=2,AG=1,得DG=.
在直角△BAF中,由=sin∠AFB=,得=,
所以GH=.
在直角△DGH中,DG=,GH=,得DH=.
因為cos∠DHG==,得x=,
所以AB=. 15分
方法二:設AB=x.
以F為原點,AF,F(xiàn)Q所在的直線分別為x軸,y軸建立空間直角坐標系Fxyz.則
F(0,0,0),A(-2,0,0),E(,0,0),D(-1,,0),B(-2,0,x),
所以=(1,-,0),=(2,0,-x).
因為EF⊥平面ABF,所以平面ABF的法向量可取=(0,1,0).
設=(x1,y1,z1)為平面BFD的法向量,則
所以,可取=(,1,).
因為cos<,>==,得x=,
所以AB=. 15分
考點:本題主要考查空間點、線、面位置關系,異面直線所成角、二面角等基礎知識,空間向量的應用,同時考查空間想象能力和運算求解能力。
點評:如何用傳統(tǒng)的方法求解此類問題,要緊扣相應的判定定理和性質定理,還要注意各類角的取值范圍;如果用空間向量求解,思路比較簡單,但是運算比較復雜,要仔細運算.
科目:高中數(shù)學 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| ||
2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com